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Abstract

A series of laboratory experiments in 9 m and 3 m long experimental chutes using
100 pm glass particles and 2 mm sand particles, was performed to investigate the effect
of scaling of supercritical, high Froude number granular flow interacting with obstacles.
The experiments were followup work on laboratory experiments performed in a 6 m
long chute in the summer 2000 (Hékonardottir, 2000), where basic understanding of the
retarding effect of avalanche breaking mounds was established. It was verified that the
collision of the flow with a row of breaking mounds leads to the formation of a jump
or a jet whereby a large fraction of the flow is launched from the experimental chute
and subsequently lands back on the chute. The retarding effect of the mounds was
investigated quantitatively by direct measurements of the velocity and runout length of
the flow along with the geometry of the jet. The effect of several aspects in the layout of
the mounds on their retarding effects was examined. It was observed that a row of steep
mounds with a height several times the flow depth, a breadth similar to the height and
narrow gaps between individual mounds can lead to a 30 — 40% reduction of the runout
length of the flow past the mounds.

*Icelandic Meteorological Office, Buistadavegur 9, IS-150 Reykjavik, Iceland.
tSwiss Federal Institute for Snow and Avalanche Research (SLF), Fluelastrasse 11, CH-7260 Davos Dorf,
Switzerland.
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1 Introduction

We report on a series of laboratory experiments conducted in order to look at the effect of
scaling on rapid granular flows interacting with obstacles. The experiments were carried out
in Davos, Switzerland, at the Swiss Federal Institute for Snow and Avalanche Research and in
Reykjavik, Iceland, at the Icelandic Meteorological Office. The experiments were performed
in collaboration between Switzerland and Iceland as a part of the research project Cadzie
which is supported by the Furopean Commision. The aim of the research described here is to
establish a fundamental understanding of the retarding effect of avalanche breaking mounds.

The experiments were followup work on small-scale laboratory experiments performed in
the summer 2000 at the University of Bristol in England (Hakonardottir, 2000) and prelimi-
nary small-scale experiments conducted earlier at the University (Woods and Hogg, 1999 and
Woods and Hogg, 1998). The experiments in Bristol provided a basic understanding of the
interaction of high Froude number granular flow with obstacles and the energy dissipation
involved in the impact of the flow with the obstacles. They showed that one row of obstacles
with a height several times the flow depth, but a height-scale corresponding to only a fraction
of the kinetic energy of the flow (H < u?/(2g), where H is the mound height, u is the flow
speed and ¢ is the gravitational acceleration), can shorten the runout of the flow by 30 —40%.
These experiments were scaled up by approximately a factor of two in the experiments in
Davos, keeping the Froude number of the flow constant. The same small glass particles were
used in the current experiments as were used in Bristol. A few experiments were conducted
using coarser sand particles in order to investigate the effect of using material of different
frictional properties and grain size on the retarding effect of the mounds. In Reykjavik, the
Bristol experiments were scaled down by approximately a factor of two again using the same
glass particles.

The report is devided into two main sections (§2 and §3). In section 2, the larger scale
experiments conducted in Davos are discussed. The experimental setup is described (§2.1)
and the results for the ballotini and sand experiments discussed in §2.2. Different techniques
to measure the speed of the flow are represented in §2.3, leading to the comparison between
basal and surface velocities in the granular current. In section 3, the smaller scale experiments
conducted in Reykjavik are described. The experimental results are then compared to the
intermediate scale experiments conducted in Bristol earlier (§4) and finally concluding with
section 5.

2 Larger scale experiments - Davos

This section describes a series of laboratory experiments performed in a 9 m long chute, where
the previous experiments, performed in Bristol, were scaled up by a factor of two.



Material | p [kgm™] | d [mm]| ¢ [] | 5 1°]
Ballotini 1600 0.1 21 —23 17— 18
Sand 1750 2 31.5—33.5 | 25.0 —27.5

Table 1: Material properties, p is the bulk density of the granular material, d the mean diameter of the
particles, ¢ the angle of repose and § the dynamic bed friction angle.

2.1 Experimental setup

The experiments in Davos were designed so that the particle current had an internal Froude
number similar as in the experiments in Bristol which is on the same order of magnitude as
for large, dry, natural snow avalanches. The internal Froude number is defined in terms of
the flow velocity, u, the depth of the flow, h, and the gravitational acceleration, g, as

It represents the square root of the ratio of the kinetic energy of the current to the potential
energy of the flow, or the ratio of the flow velocity to the speed of free surface gravity waves
in the flow. The Froude number in the experiments was F'r ~ 10. The flow front could easily
be tracked down the chute and the speed in the interior of the flow was measured by tracing
irregularities in the flow by means of optical velocity censors and a high speed camera, see
§2.3. The frame grabber of the video machine used in analysing the experiments accessed 25
frames per second, while the high speed camera accessed 5000 frames per second.

Model barriers were designed so that the ratio of the height of the barriers to the flow
depth was between 1 and 5. The barrier Froude number is defined in terms of the flow velocity
and the height of the barriers, H, as

v

and represents the square root of the ratio of the kinetic energy of the current to half the
potential energy corresponding to the height of the barriers. The Froude number of the
barriers in the experiments was in the range 5 < F'ry, < 10.

The laboratory experiments were performed on a 9 m long wooden chute consisting of two
straight sections (Fig. 1). The slope of the upper section was 45° and that of the lower section
about 10°. A row of obstacles was located on the lower section, 15 ¢cm downstream from the
top of the lower section. The barriers were constructed of wood and had heights, H, of 2.5,
3, 5 and 10 cm and widths, B, of 5, 10 and 15 ¢m, with the upstream face perpendicular to
the chute (Fig. 2).

Almost spherical, glass ballotini particles were used in the experiments as well as sand
particles.
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Figure 1: Schematic diagram of the chute.

Figure 2: Schematic diagram of a mound.

In each experiment, a measured amount of particles was released from the top of the chute.
The motion down the slope was recorded by video and subsequently analysed, and the runout
length and distribution of the deposited particles, averaged over the width of the chute, was
measured. In order to simplify the organisation of the experiments, a datum configuration of
the mound geometry, avalanche size, etc. was defined. It consisted of a mass of 50 kg and 3
elongated mounds covering 60% of the cross sectional area of the upper section of the chute.
The mounds had a height of 5 cm (approximately twice the flow depth) and were 10 cm wide,
see Figure 3. Experiments with mounds were compared to a control run, where no obstacles
were used.

The experiments conducted are summarised in Table 2.
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Figure 3: Schematic diagram of the datum mound configuration, plan view.

| Experiment | Ballotini | Sand | H [em] | B[em] [A[em] | A | H/B |
Low dam X 2.5 - - 1.0 -
Low dam X 3.0 - - 1.0 -
Dam X X 5 - - 1.0 -
High dam X 10 - - 1.0 -
Datum mounds X X 5 10 6 0.6 0.5
Narrow mounds X X 5 5 3 0.6 | 1.0
Low mounds X 2.5 5 3 0.6 0.5
High, wide mounds X 10 15 10 0.6 | 0.67
Smaller rel. area X 5 10 15 0.4 0.5
Two rows X X 5 10 6 0.6 0.5
Conical mounds X X 5 10 0 0.5 0.5

Table 2: The experiments conducted. A is the proportion of the cross sectional area of the upper section of
the chute covered by mounds.

2.2 Results

It was observed that a row of barriers leads to a significant decrease in the runout length
of the flow downstream of the obstacles, relative to a flow without barriers. The granular
current, passing over the obstacles forms an airborne jet that is launched from the top of the
obstacle. The jet travels a considerable distance downslope before landing back on the chute.
Thereafter it resumes downslope motion along the chute.
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2.2.1 Control experiment
Ballotini

The control experiment with no barriers consisted of releasing 50 kg of material down the
chute and resulted in a runout, z.,; = 3.90 m, measured from the point where the row of
obstacles was placed in the experiments with obstacles.

1

0.8

h/thLJJ

0.4 |

0.2 -

0 0.6

4
x/xcont

Figure 4: Averaged non-dimensional length profile of the deposit of ballotini on the lower section for the
control run, measured from the start of the lower section and plotted relative to the maximum runout, zopn¢.

The particle current, traveling down the upper section of the chute, quickly reached a
terminal speed close to 5 ms™!, which remained constant until the slope angle changed. The
current traveled with the shape of a parabolic cap, with a quasi-steady maximum flow depth
of 2.25 e¢m, corresponding to an internal Froude number of approximately 11. The flow started
decelerating on the lower section and came to rest near the end of the section (Fig. 4).

Sand

The control experiment for the sand also consisted of releasing 50 kg of material down the
chute and resulted in a runout, x.,,; = 3.25 m measured from the point where the row of
obstacles was placed in the experiments with obstacles.

The particle current, traveling down the upper section of the chute, reached a terminal
speed close to 5.3 ms™!, which remained constant until the slope angle changed. The current
traveled with the shape of a parabolic cap, with a quasi-steady maximum flow depth of
3.0 cm, corresponding to an internal Froude number of approximately 10. The averaged non-
dimensional length profile of the deposit of sand on the lower section of the chute is displayed

11
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Figure 5: Averaged non-dimensional length profile of the deposit of sand on the lower section for the control
run, measured from the start of the lower section and plotted relative to the maximum runout, Zon:.

in Figure 5.

2.2.2 Flow without mounds

12 1
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Figure 6: Change in the internal Froude number of the ballotini particle current for different mass of material
released, measure on the upper chute after the stream had reached a semi-steady state.
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The effect of varying the total mass of material released, on the internal Froude number of
the flow of ballotini particles on the upper section, was investigated for flow without barriers.
The Froude number, once the flow had reached a quasi-steady state on the upper section
of the chute, was found to be relatively independent of the amount of material released, see
Figure 6. The speed of the flow front varied from about 4.5 ms™! for 35 kg of ballotini to about
5.5 ms~! for 70 kg and the maximum flow depth from about 1.9 cm for 35 kg to about 2.5 cm
for 70 kg. The Froude number was found to be in a relatively narrow range for comparatively
large variations in the amount of material released and in the respective speed of the flow.
This, along with the fact that the flow reached an approximate steady state on the upper
section, suggests that a turbulent drag force depending on the square of the velocity affects
the motion of the current in addition to a Coulomb drag force proportional to the weight of
the material and the downslope gravitational acceleration (see Hakonardottir, 2000 for further
discussion).

2.2.3 Flow with mounds

Ballotini
| Experiment | runout, « [m] | /2 con | cm runout, 2" [m] | 2 /am
Low dam 3.58 0.92 1.95 0.73
Dam 2.60 0.67 1.15 0.43
High dam 2.10 0.54 0.75 0.28
Datum mounds 3.01 0.77 1.64 0.61
Narrow mounds 2.60 0.67 1.43 0.53
Low mounds 3.35 0.86 2.05 0.76
High mounds 2.70 0.69 1.15 0.43
Smaller rel. area 3.14 0.81 1.92 0.72
Two rows 2.45 0.63 1.32 0.49
Conical mounds 3.29 0.84 2.11 0.79

Table 3: Summary of the experiments conducted. The runout was measured from where the row of obstacles
was placed, Zcont 18 the runout of the control run, ™ is the center of mass runout and z¢7,, = 2.68 m, also
measured from where the row of obstacles was placed.

It can be assumed that the flow had slowed down somewhat and thickened before hitting
the row of mounds on the lower section of the chute, leading to a slightly lower Froude number
than on the upper section, 7.e. Fr & 8 — 9.

The non-dimensional runout, z /.., is plotted against the non-dimensional height of the
dams in Figure 7 for the experiments summarised in Table 3. For the dams, the runout
decreased with increasing height of the dam. Increasing the height of the mounds to more

13
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Figure 7: Non-dimensional runout, 2 /T cont for the ballotini plotted against non-dimensional height of the
obstacles, H/h.

than twice the flow depth did, on the other hand, not lead to further reduction in the runout
(see Hakonardottir, 2000 for explanation). For the low retarding structures (height similar
to the thickness of the flow), the mounds were more effective than a continuous dam of the
same height. Also, narrow mounds with many gaps inbetween were more effective than wide
mounds with fewer gaps, covering the same cross sectional area. Figure 7 also shows that one
row of the most effective configuration of 5 cm high mounds shortens the runout by about
30%, which is the same reduction of runout as for a continuous dam of the same height. It is
interesting to note that the most common shape of mounds, i.e. traditional conical mounds,
is the least effective configuration and that two rows of mounds are not as effective as one
might conclude from the effectiveness of a single row.

The depth-averaged length profiles were plotted for all the runs (see appendix A.1). From
the profiles, we see that the bulk of the material is deposited higher upstream on the chute
for the mound experiments than the deposit of the control run. It is therefore of interest to
look at the location of the centre of mass of the deposits with obstacles relative to the centre
of mass for the control run. Figure 8 illustrates that the higher the obstacles, the further
upstream the centre of mass is deposited. A continuous dam is more effective in shortening
the centre of mass runout than a row of mounds for all heights and geometries of obstacles.
Also, the centre of mass runout is in all cases shortened more than the maximum runout
of the flow. The conical mounds are still the most ineffective configuration and two rows of
mounds are the most effective configuration for a mound height of 5 cm, since most of the
deposit is left upstream of the lower row of mounds and the material near the front is very
thin.

14
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Figure 8: Non-dimensional centre of mass runout, z°"/z¢7, for the ballotini plotted against non-

dimensional height of the obstacles, H/h.

In the experiments in Bristol, the jet of particles jumping over the mounds and dams,
could be treated like a projectile motion in two dimensions (Fig. 9):

F = mg — mkx|x|,

where F is a force exerted on the mass m, g is the gravitational acceleration and k is a
dimensional constant representing the drag, subject to the initial conditions

z=x=0 at t=0

and

#(0) = wuycosby,

A mound

Figure 9: Sideview of a jet.
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2(0) = wuysind;.

In Bristol, it was found that the geometry of the jet was best explained by neglecting the air
resistance represented by the coefficient k. By taking & = 0. the solution to the system above
is

T = wupcosbt, (1)

1
z = wupsinfit — §gt2, (2)

and the equation for the trajectory of the jet is

$2

z==xtan b, — 57 sec 8.

1

This also happened to be the case for the ballotini experiments in Davos, described in this
report.

The oncoming speed, ug, was estimated from the steady speed on the upper section of the
chute, to be ug = 4 ms™!. The trajectory of the jet was measured in each experiment. The
parameters that define the geometry of the quasi-steady jet are the throw angle, #;, and the
velocity, uy. It was hard to measure 6; and u; directly from the video recordings since a cloud
of particles obstructed a clear vision of the throw. They could nevertheless be calculated
indirectly as follows. The trajectory of the jump was very well defined in the experiments,
thus a parabola z = ax — b?2% could be fitted to the trajectory using the method of least
squares. Hence,

A, = arctana,
sect, [g

u =,
' b V2

Since u; and #; are interdependent, an error in a leads to an error in the throw angle, 6,
which adds to the already existing error in u; caused by inaccuracy in b.

The jets for the runs with dams were drawn from the video recordings and moved into
the coordinate system illustrated in Figure 9. Parabolas were then fitted to the points, see
Figure 10. These jets have important practical consequences for the use of multiple rows of
mounds to retard avalanches. The spacing between the rows must be chosen sufficiently long
so that the material launched from the mounds does not jump over rows further down the
slope in order for the lower rows to have full retarding effect.

An understanding of the factors that control §; and w; is fundamental to be able to
predict the trajectory of the jet. The throw angle, 8; + & (£ is the angle between the chute
and horizontal, defined in Figure 9), calculated as described above, is plotted against the non-
dimensional height of the mounds, H/h, in Figure 11. As the height of the mounds increases,
01 becomes larger and the particle current jumps under a steeper angle.

16
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Figure 10: Jet profiles for 2.5, 5.0 and 10.0 cm high dams.
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Figure 11: The throw angle, ; + ¢ plotted against the non-dimensional height of the obstacles, H/h, for
the dams.

A considerable amount of energy is dissipated when the flow hits the mounds and lands
again on the chute. The ratio u;/ug represents the speed reduction in the initial impact with
the obstacles. If no energy is lost in the collision, simple energy conservation gives

_u% = §u?) - gH’a

17



Figure 12: The height, H' defined, sideview of a mound.

where H' is defined in Figure 12. Hence,

Uy

\ud —2gH'

Plotting this ratio provides an estimate of the amount of energy dissipated in the impact and
the process of turning the flow (Fig. 13). The use of H' leads to the largest possible decrease
in the kinetic energy due to an increase in potential energy. This is not entirely correct since it
was observed that a wedge is formed upstream of the mounds reducing the effective height of
the mounds, H’. This may lead to a small underestimate of the energy dissipation. Figure 13

~1. (3)

illustrates that a substantial fraction of the energy was dissipated in the impact. The velocity
was lowered by around 20% for a non-dimensional dam height of 1. Further increase in the
dam height leads to further lowering of the velocity and the velocity was reduced by about

1

uZ —2gH’

0.6 |

Ul/

0.4 |

0.2 |

3
H/h

Figure 13: The ratio in equation (3) plotted against the non-dimensional height H/h for the dams.

50% for a non-dimensional dam height of 4.4. The energy dissipation can be explained by the

18



fact that grain-grain collisions in the flow, which may be expected to become more frequent
due to an interaction of the flow with the mounds or a dam, do not conserve kinetic energy.
The coefficient of restitution, €, was measured to be € = 0.8 for 350 pum glass ballotini. This
value may be expected to give a reasonable estimate of the coefficient for the 100 ym ballotini.

It was observed in the experiments in Bristol that a row of mounds lowered the velocity
uy in a broadly similar way as a dam for mound heights H/h < 2, and the throw angle,
01 4 £ was similar to that of a dam for all mound heights. The jet trajectories were similar to
those for dams for the lower mounds, but the formation of a wedge upstream of the mounds
introduced a three dimensionality in the jets leading to a slight shortening of the length of
the trajectory along the chute.

Sand
| Experiment | runout, « [m] | /2 con | cm runout, 2" [m] | 2 /2m
Low dam 2.00 0.61 1.16 0.55
Dam 1.65 0.51 0.59 0.27
Datum mounds 2.55 0.78 1.38 0.66
Narrow mounds 1.95 0.60 1.10 0.53
Two rows 1.70 0.52 0.52 0.25
Conical mounds 2.05 0.63 1.33 0.63

Table 4: The experiments conducted using sand. The runout was measured from where the row of obstacles
was placed, Zons 1s the runout of the control run, " is the center of mass runout and z¢7', = 2.09, also
measured from where the row of obstacles was placed.

It can be assumed for the sand like for the ballotini that the flow had slowed down
somewhat and thickened before hitting the row of mounds on the lower section of the chute,
leading to a slightly lower Froude number than on the upper section, i.e. F'r ~ 7 — 8.

The non-dimensional runout, z/z .., is plotted against the non-dimensional height of the
obstacles in Figure 14 for the experiments summarised in Table 4. We see that the runout
for the dams shortens with increasing height as for ballotini. A non-dimensional dam height
of 1.7 shortens the runoutlength by about 50%. For the mounds, two rows are most effective
and shorten the runout by the same amount as a dam for H/h = 1.7. It is interesting to
note that both many narrow mounds and conical mounds are more effective than the datum
mound configuration.

The depth-averaged length profiles were plotted for all the runs (see appendix A.2). From
the profiles we see that the bulk of the material is deposited higher upstream on the chute
for the mound experiments than the deposit of the control run. We therefore look at the
location of the centre of mass of the deposits with obstacles relative to the centre of mass for
the control run. Figure 15 illustrates that the higher the obstacles the further upstream the

19
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Figure 14: Non-dimensional runout, #/zn: for sand plotted against non-dimensional height of the obsta-

cles, H/h.
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Figure 15: Non-dimensional centre of mass runout, z°™/z¢m, for sand plotted against non-dimensional

height of the obstacles, H/h.

centre of mass is deposited. Two rows of mounds are still the most effective configuration and
have similar effect as a dam of the same height. The effect of the conical mounds is similar
to the datum mound configuration. The centre of mass runout is in all cases shortened more
than the maximum runout of the flow.

20



2.3 Speed measurements

Two methods were used to measure the speed of the current. Optical sensors in the sliding
surface of the chute were used to measure the basal velocity of the flow, vy, and a high speed
camera with a record rate up to 5000 frames per second was used to determine the speed of
the material at the surface of the flow, v,.

2.3.1 Optical velocity sensors

The speed of the flow was obtained by using a measurement procedure based on optical
reflection. A new generation of optical sensors was developed, based on the design originally
proposed at Montana State University (Dent et al., 1997). The optical sensor consists of
two photo diode/photo transistor pairs. The photo diode emits infrared light and the photo
transistor detects the reflected infrared light. If a reflecting object moves over the sensor, the
photo transistor supplies a voltage signal as a function of the intensity of the reflected light.
Using a bandpass filter, only the intensity variations are recorded by the data acquisition
system (a PC with a National Instruments PCI DAQ card).

—————— > Signal A
Aluminium tube Signal B
Avalanche
—_—
Signal A
IR-Diode IR-Transistor Signal B
a) b)

Figure 16: a) Top view of an optical speed sensor. The tube also contains the electronics running the
sensors. b) The optical sensors are mounted flush to the sliding surface of the chute. s is the spacing between
the the diode/transistor pairs.

The sensors were placed in aluminium tubes covered with transparent perspex disks with
a fixed distance between the diode/transistor pairs. The tubes were inserted flush to the
sliding surface of the chute, see Figures 16 and Figure 18a).

When granular material flows over an optical sensor, each transistor pair submits a voltage
signal as a function of the instantaneous internal structure of the granular material. Due to
the fact that the internal structure of the flow is constant over a certain distance, the output
signals of each pair are similar but time shifted by

At = s/v,

21



—signal & |]
— SignalB

[ o

ooor

Voltage IV

oA

0ae oax O a0 o4 D Ad D A& D A2 Dan DAl 0 ad

Time /5

Figure 17: Signal A (upper pair) and B (lower pair) from the optical sensors. Signal B has a similar form
to signal A, but is time shifted.

where v is the flow velocity and s the spatial distance between the two pairs (see Figure 17).
Both the data acquisition and the analysis software were programmed in LabVIEW (Na-
tional Instruments). In the analysis, a cross correlation function

S(r) = / A(t) B(t +7)dt

is formed from the sensor output functions A(¢) and B(¢). This function shows for which time
shift, Timax, the correlation of the signals is optimal. Hence the flow velocity can be calculated

S

v =
Tmax

2.3.2 Measurements with a high speed camera

To investigate the influence of friction between the granular flow and the sliding surface of the
chute, the speed at the surface was measured using a high speed camera (see Figure 18). The
camera could record up to 5000 frames per second but its memory was limited to 512 frames.
The opening time of the shutter, ¢, was adjusted in the range of ¢,¢[500 s7';1250 s~!]. An
experiment on the chute takes between one and two seconds, so that a rate of 250 frames per
second was used. The films were analysed using WinAnalyse, by tracking surface structures of
the flows (for the experiments using ballotiny, marker particles were tracked), and the velocity
of the flow calculated as a function of time directly above the optical sensors.

Comparing the velocities (see Figures 19 and 20) we see that friction reduces the speed at
the bottom by about 1 ms™! for the ballotini and by about 0.5 ms™' for sand compared to
the speed near the surface of the flow.

22



Figure 18: Pictures from the high speed camera. In a) the optical sensors built in the sliding surface of
the chute are shown. In d) the arrow points to one of the marker particles we mixed into the ballotini to
measure the speed. For the sand experiments we did not need marker particles because the sand avalanches
have enough internal optical structure for tracking.
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2.3.3 Comparison between basal and surface velocities
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Figure 19: Velocity at the sliding surface of the chute compared to the surface velocity for the ballotini
experiments. One can see clearly that the friction at the sliding surface reduces the basal velocity.

Looking at the data from the optical speed sensors, three phases of the flow can be dis-
tinguished: 1) the main flow, 2) the final stages of the main flow and 3) the rest. The main
flow is characterised by a quite stable behavior of flow depth and velocity, which lasts for
about half a second when a decrease of the basal velocity occurs. The velocity decrease is
a consequence of the thinning of the flow towards the end. This decrease is clearly visible
in figures 19 and 20. The end of the main flow can be seen at 0.8 s for the ballotiny and
0.6 s for the sand. When the bulk of the flow has passed, the remaining material creates a
shallow flow over the sensors. The thickness is about 2-5 particle layers (4 mm for the sand)
and the particles are jumping down the chute almost frictionless, leading to an increase in
the flow velocity. At this stage, no difference can be detected between the basal and surface
velocities.

3 Smaller scale experiments - Reykjavik

In this smaller scale experimental series, the experiments in Bristol were scaled down by a
factor of two using a 3 m long chute.
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Figure 20: Velocity at the sliding surface of the chute compared to the surface velocity for the sand experi-
ments.

3.1 Experimental setup

The experiments in Reykjavik were designed in the same way as those in Davos. The particle
current had an internal Froude number ~ 10. The flow front was tracked down the chute by
a video camera. The frame grabber of the video machine used in analysing the experiments
accessed 50 frames per second.

Model barriers were designed so that the ratio of the height of the barriers to the flow
depth was between 1 and 4. The Froude number of the barriers in the experiments was in
the range 6 < F'ry < 12.

The laboratory experiments were performed on a 3 m long wooden chute consisting of
two straight sections (Fig. 21). The slope of the upper section was 43° and that of the lower
section about 14°. A row of obstacles was located on the lower section, 2.5 ¢cm downstream
from the top of the lower section. The barriers were constructed of wood and had heights, H,
of 0.5, 1, 1.5 and 2 cm and widths, B, of 1, 2 and 3 c¢m, with the upstream face perpendicular
to the chute (Fig. 22). Upstream faces of 60° and 30° were also tried for the narrow mound
configuration, described in table 6. Almost spherical, glass ballotini particles were used in the
experiments, see table 5 for material properties.

In each experiment, a measured amount of particles was released from the top of the chute.
The motion down the slope was recorded by video and subsequently analysed, and the runout
length and distribution of the deposited particles, averaged over the width of the chute, was
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Figure 21: Schematic diagram of the chute.

Figure 22: Schematic diagram of a mound.

measured. In order to simplify the organisation of the experiments, a datum configuration of
the mound geometry, avalanche size, etc. was defined. It consisted of a mass of 2 kg and 6
elongated mounds covering 60% of the cross sectional area of the upper section of the chute.
The mounds had a height of 1 cm (approximately twice the flow depth) and were 2 cm wide,
see Figure 23. Experiments with mounds were compared to a control run, where no obstacles
were used.

The experiments conducted are summarised in Table 6. Mounds designed as a part of
avalanche protection measures below the gully Drangagil above the town Neskaupstadur in
eastern Iceland have a trapizoidal geometry. This type of mounds was therefore also tested
in the experiments (Fig. 24).
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| | o[]
23|19 —21

Material | p [kgm™] | d [mm]| ¢ [°
Ballotini | 1600 | 0.1 |21 —

Table 5: Material properties, p is the bulk density of the granular material, d the mean diameter of the
particles, ¢ the angle of repose and § the dynamic bed friction angle.
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Figure 23: Schematic diagram of the datum mound configuration, plan view.

3.2 Results
3.2.1 Control experiment

The control experiment with no barriers consisted of releasing 2 kg of material down the chute
and resulted in a runout, x.,,; = 1.22 m, measured from the point where the row of obstacles
was placed in the experiments with obstacles. The particle current reached a semi-steady
state on the upper section of the chute just before reaching the lower section. The current
travelled in a parabolic shape as observed in the larger scale experiments and came to a rest
on the lower section, with the first front reaching furthest and particles flowing on top of
material already at rest (Fig. 25).

3.2.2 Flow without mounds

The effect of varying the total mass of material released, on the internal Froude number of the
flow of ballotini particles on the upper section, was investigated for flow without barriers. The
Froude number was found to vary slightly with the amount of material released and not stay
constant as observed in Bristol and Davos. This might be a consequence of the flow not having
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Experiment | Hcm] | Blcm] [Afem] | A | H/B |

Low dam 0.5 - - 1.0 -
Dam 1.0 - - 1.0 -
High dam 1.5 - - 1.0 -
Higher dam 2.0 - - 1.0 -
Datum mounds 1.0 2.0 1.14 0.6 0.5
Narrow mounds 1.0 1.0 0.61 0.6 1.0
Low mounds 0.5 1.0 0.61 0.6 0.5
High 1.5 3.0 1.60 | 0.6 ] 0.5
Smaller rel. area 1.0 2.0 2.4 0.4 0.5
Two rows 1.0 2.0 1.14 0.6 0.5
Conical mounds 1.0 2.0 0 0.5] 0.5
Trapizoidal mounds 1.0 3.0 0 0.6 | 0.5

Table 6: The experiments conducted. A is the proportion of the cross sectional area of the upper section of
the chute covered by mounds.

completely reached a semi-steady state before hitting the mounds, or the channalisation and
basal friction effecting the flow more than for the larger scales in Bristol and Davos.

3.2.3 Flow with mounds

Two photographs of experiments with mounds in the 3 m chute are shown in Figure 27. The
non-dimensional runout, /., is plotted against the non-dimensional height of the mounds
in Figure 28 for the experiments summarised in Table 7. Again we see that increasing the
height of the mounds shortens the runout of the current until the mounds have reached a
height about twice that of the thickness of the current. Increasing their height beyond that
does not lead to a significant reduction in the runout. The dams, on the other hand continue
to shorten the runout of the current when their height is increased more than this. Like
before, low mounds (H/h < 2) are more effective than low dams. The conical mounds are
still the most ineffective mound geometry and narrow mounds the most effective for the same
mound height and area covered. The trapizoidal mounds lead to a very similar reduction in
the runout as the datum mounds.

The effect of the obstacles in the flow path becomes greater when looking at the runout
of the center of mass (Fig. 29). We still see the same trends, i.e. the conical mounds are
least effective and the narrow mounds reduce the runout by the biggest amount for the same
height and area covered.

The effect of changing the upstream angle of the mounds, «, on the runout of the stream
for a 2 kg release is plotted in Figure 30. The narrow mound configuration was used. We see
that steeper upstream angles are more effective than less steep angles.
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Figure 24: A schematic diagram of trapizoidal mounds.
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Figure 25:  Averaged non-dimensional length profile of the deposit of ballotini on the lower section for
the control run, measured from the start of the lower section and plotted relative to the maximum runout,
Zeont = 1.22 m.

The jets of particles over the dams were drawn from the video recordings and moved into
the coordinate system illustrated in Figure 9. Parabolas were then fitted to the points, see
Figure 31. The throw angle, 6; 4 £, calculated as described in section 2.2.3, is plotted against
the non-dimensional height of the mounds, H/h, in Figure 32. As the height of the mounds
increases, #; becomes larger and the particle current jumps under a steeper angle.

The ratio uy/uf, where ufy = /ud — 2gH’, defined in equation (3) represents the energy
dissipation in the impact with the mounds and the process of turning the flow. Figure 33
illustrates that a substantial fraction of the energy was dissipated in the impact. The velocity
was lowered by around 40% for a non-dimensional dam height close to 1. This reduction
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Figure 26: Change in the internal Froude number of the ballotini particle current for different mass of
material released, measured at the end of the upper chute. One cup equals 0.4 kg of ballotini.

‘ Experiment H runout, z [m] ‘ T/ T oot ‘ cm runout, z"[m] ‘ " [l
Low dam 1.09 0.89 0.58 0.73
Dam 0.92 0.75 0.43 0.55
High dam 0.75 0.61 0.33 0.42
Higher dam 0.65 0.53 0.25 0.32
Datum mounds 0.91 0.75 0.46 0.58
Narrow mounds 90° 0.81 0.66 0.41 0.52
Narrow mounds 60° 0.89 0.73 0.49 0.62
Narrow mounds 30° 0.96 0.79 0.55 0.69
Low mounds 0.99 0.81 0.55 0.69
High mounds 0.81 0.66 0.40 0.50
Smaller rel. area 1.0 0.82 0.63 0.79
Two rows 0.76 0.62 0.38 0.47
Trapizoidal 0.88 0.72 0.48 0.61
Conical mounds 0.98 0.80 0.59 0.75

Table 7: Summary of the experiments conducted. The runout was measured from where the row of obstacles
was placed, Zcont 18 the runout of the control run,; 2™ is the center of mass runout and z¢7%,, = 0.79 m, also
measured from where the row of obstacles was placed.

might be slightly inaccurate (too high) since ug = 2.6 ms™' was used. The semi-steady speed
on the upper section of the chute was 2.7 ms™! and is somewhat lower when the current hits
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Figure 27: Photographs of the 3 m chute before and after the flow hits a row of trapizoidal mounds.
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Figure 28: Non-dimensional runout, /xon: for the ballotini plotted against non-dimensional height of the
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dimensional height of the obstacles, H/h.
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Figure 30: Non-dimensional runout, x/2c.n: plotted against the angle between the upstream face of the
mounds and the chute, «.
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Figure 31: Jet profiles for 0.5, 1.0, 1.5 and 2.0 cm high dams.

the mounds since it has travelled on the less steep lower section of the chute for 2.5 cm. We
were not able to measure the speed of the current just before hitting the mounds, so the speed
used, 2.6 ms~! is an estimate and might be too high. We see that an increase in the dam
height leads to lowering of the velocity.
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Figure 32: The throw angle, ; + ¢ plotted against the non-dimensional height of the obstacles, H/h, for
the dams.
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Figure 33: The ratio in equation (3) plotted against the non-dimensional height H/h for the dams.

4 Experiments at different scales compared

The experiments in Davos were in roughly twice the scale of the Bristol experiments, i.e.
twice the flow height and thickness for the ballotini and sand experiments, but with the same
internal Froude number of the order 10. The experiments performed in Reykjavik were in
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about half the scale of the Bristol experiments. A summary of the material properties in these
experiments is provided in Table 8.

Experiment | Material o [°] d[°] d [mm]
Bristol ballotini 25 — 26 28 — 30 0.1
Davos ballotini 21 — 23 17 — 18 0.1
Davos sand 31.5—33.5 |25 —27.5 2
Reykjavik | ballotini 21 — 23 19 — 21 0.1

Table 8: Material properties summarised, for the materials used in the experiments in Bristol, Davos and
Reykjavik. The angle of repose is represented by ¢, § the dynamic bed friction angle and d is the mean
particle diameter.

The Froude numbers of the flows on the upper sections of the chutes, using ballotini, were
independent of the amount of material released for the Bristol and Davos experiments while
the Reykjavik experiments showed some change in the Froude number.

1
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h/hma:c

0.4 |
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0 . 0.4 0.6
x/xcont

Figure 34: Averaged length profiles for the control runs without obstacles.

The averaged length profiles for the control runs without obstacles are plotted in Figure 34.
The variations might be caused by the different frictional properties of the experimental
materials and the chutes.

The datum mound configuration for the experiments in Bristol is shown in Figure 35.
The shortening of the runout (Fig. 36) is broadly similar for the ballotini experiments at the
three scales; for H/h < 2 the mounds are somewhat more effective than dams but when the
mound height is increased further the dams become more effective. The most effective mound
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Figure 35: Datum configuration of the mound geometry in Bristol, plan view.
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Figure 36: Non-dimensional runout, 2/z..n: plotted against non-dimensional heights of the obstacles, H/h.
Datum m. c. stands for datum mound configuration and is defined in Fig. 35.

configuration shortens the maximum runout by about 30% for a single row of mounds. The
sand experiments also show a similar trend. The most effective single row mound configuration
shortens the maximum runout by about 40% and is approximately as effective as a dam of
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the same height.
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Figure 37: The throw angles #; and 6; + ¢ plotted against the non-dimensional heights of the dams.

The throw angle, 6y, (the angle relative to the horizontal) was only analysed for the
ballotini experiments and is plotted on the first graph in Figure 37 and the throw angle 6, + ¢
(angle relative to the slope in which the mounds are situated) on the second graph.
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Figure 38: The ratio in equation (3) plotted against the non-dimensional heights of the dams.

Figure 38, displaying results for the ballotini experiments for dams, suggests that energy
is dissipated in a broadly similar manner in the impact with the dams, for all laboratory
scales. Thus, it appears that the speed reduction is a function of the non-dimensional height
of the obstacles and not rapidly varying with the absolute scale of the flow over the obsta-
cles. Tt seems reasonable to conclude that this result holds for substantially larger scales
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than the scales of the laboratory experiments. More experiments at larger scales are though
needed before one can conclude that these results also hold for the 10% larger scale of natural
avalanches.

5 Conclusions

The main result of the experiments is that the shortening in the runout is very similar for
all laboratory scales. Sand with completely different material properties and grain size also
yields similar results. It may therefore be expected that the reported results hold to some
approximation for substantially larger scales and different granular materials.

The experiments verify that breaking mounds have a considerable retarding effect on high
Froude number granular currents. A substantial fraction of the kinetic energy of the oncoming
flow is dissipated in the interaction of the flow with the mounds, including the launching of
the jet and the subsequent landing of the jet and mixing with material flowing along the
chute. Furthermore, a row of appropriately designed mounds has almost the same retarding
effect as a continuous dam of the same height for non-dimensional obstacle heights up to 2.
The energy dissipation depends on several aspects in the layout of the mounds. Specifically,
we have examined the influence of the height of the mounds relative to the thickness of the
oncoming stream, H/h, the steepness of the upper face of the mounds (only examined in
Bristol), the height of the mounds relative to their width, H/B, the proportion of the cross
sectional area of the impact zone covered by the mounds, A.

The following conclusions regarding the layout of the mounds can be drawn from the
experiments in Davos and in Bristol:

1. H/h =~ 2: The proportion of the height of the mounds to the flow thickness. Increasing
the height of the mounds any further does not lead to an additional reduction in the
runout of the current. Note that snow accumulation on the ground, in the case of real

snow avalanche protection measures, will lead to the need for somewhat higher mounds,
typically H/h > 3.

2. The mounds should have steep upper faces.

3. H/B = 1: The proportion of the height of the mounds to their width (above the natural
snowcover). For the same relative cross sectional area and height of the mounds, it is
more effective to use mounds with a height to width ratio of approximately 1 than fewer
and wider mounds.

4. A: The proportion of the flow path covered by mounds. Should be as large as possible
and the gaps in between the mounds as small as possible. This is done to obtain
maximum mixing of streams in the jet. In some cases a row of mounds can be more
effective than a continuous dam with the same height (for a small ratio of H/h and
certain mound configurations).
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A Averaged length profiles - Davos

The averaged length profiles are plotted for each experiment and compared to the control run

and the datum mound configuration.
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Figure 39: Averaged length profile for the dams.
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Figure 40: Averaged length profile for conical mounds and two rows of mounds.
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Figure 41: Averaged length profile for a smaller fraction of the area covered and smaller mounds.
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Figure 42: Averaged length profile for narrow mounds and high mounds.
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Figure 43: Averaged length profile for the dams.
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Figure 44: Averaged length profile for conical mounds and two rows of mounds.
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Figure 45: Averaged length profile for narrow mounds.

B Averaged length profiles - Reykjavik

The averaged length profiles are plotted for each experiment and compared to the control run
and the datum mound configuration. Ballotini was used in all the runs.
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Figure 46: Averaged length profile for the dams.
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Figure 47: Averaged length profile for conical mounds
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Figure 48: Averaged length profile for a
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Figure 49: Averaged length profile for narrow mounds and high mounds.
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