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ABSTRACT 
Snow avalanches are strongly influenced by the basal topography that they flow over. In 
particular, localized bumps or obstacles can generate rapid changes in the flow thickness and 
velocity (shock waves) that dissipate significant amounts of energy. Understanding how 
avalanches flow over or around obstacles is therefore very important for the design of 
catching or deflecting dams. Even the flow over a smooth bump is not as simple as one might 
expect. At steady state the flow can detach from the obstacle and form an airborne jet, or it 
can stay attached to the bump by forming an upstream shock. Multiple steady states also form 
in the oblique flow past a wedge, with either a weak, strong or detached shock forming 
dependent on the upstream Froude number and the wedge deflection angle. Flows past 
cylinders generate bow shocks and grain free regions on the lee side, while blunt bodies form 
an upstream detached shock and a dead zone adjacent to the obstacle. Depth-averaged 
avalanche models are able to solve for most of these configurations although they are not able 
to model the airborne jet where the particles follow ballistic trajectories. 

1. INTRODUCTION 
The first shallow-water-like snow avalanche models were developed in Russia (see e.g. 
Grigorian et al. 1967) and were motivated by the close analogy between the flow of a shallow 
layer of snow and a shallow layer of fluid. Savage and Hutter (1989) provided the first formal 
derivation of a depth-averaged model appropriate for snow avalanches and the theory used in 
this paper is a generalization of that early work and is a synthesis of the two-dimensional 
models of Gray, Wieland and Hutter (1999) and Gray, Tai and Noelle (2003). The model is 
formulated in an orthogonal curvilinear coordinate system 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 in which the downslope 
coordinate 𝑂𝑂 is defined by a curvilinear reference surface that follows the terrain and is 
inclined at an angle 𝜁𝜁(𝑂𝑂) to the horizontal, the 𝑂𝑂-axis points across the slope and the 𝑂𝑂-axis is 
the upward pointing normal. In these coordinates the depth-averaged mass and momentum 
balances for the avalanche thickness ℎ(𝑂𝑂,𝑂𝑂, 𝑡𝑡) and the depth-averaged velocity 𝑢𝑢(𝑂𝑂,𝑂𝑂, 𝑡𝑡) are 

 
where 𝑔𝑔 is the constant of gravitational acceleration, the operators div, grad and dyadic 
product ⊗ are defined in the (𝑂𝑂,𝑂𝑂)-surface and z=𝑏𝑏(𝑂𝑂, 𝑂𝑂) defines the height of any 
superposed topography above the curvilinear reference surface. The source term on the right 
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hand side of (2) is due to the component of gravity acting in the downslope direction 𝒊𝒊 and a 
Coulomb friction 𝜇𝜇 that opposes the direction of motion  

 
where 𝜅𝜅 = −𝜕𝜕𝜁𝜁/𝜕𝜕𝑂𝑂 is curvature of the terrain-following coordinate and which provides a 
correction to the hydrostatic pressure. The system is hyperbolic and it is therefore useful to 
define the Froude number Fr = | |/�𝑔𝑔 ℎ  cos 𝜁𝜁 , which is the ratio of the flow speed to the 
gravity wave speed. In particular, the flow is subcritical if Fr < 1, critical if Fr = 1 and 
supercritical if Fr > 1 in which case shocks (or discontinuities) in the solution are anticipated. 
In this situation equations (1-2) are no longer valid, because they assume smoothness. Instead 
it is possible to derive jump conditions (see e.g. Chadwick 1974) for the depth-averaged mass 
and momentum that apply across the discontinuity 

 
where the jump bracket notation is the difference of the enclosed quantity on either side of the 
shock, 𝒏𝒏 is the normal to the shock and 𝑣𝑣𝑛𝑛 is the shock speed in the normal direction.  

2. MULTIPLE STEADY STATES FOR THE FLOW OVER A SMOOTH BUMP 
Fig. 1(a,b) shows two different flows over a smooth bump arising from identical upstream 
conditions (Viroulet et al. 2017). In Fig. 1(a) the avalanche flows rapidly over the bump and 
forms an airborne jet, while in Fig. 1(b) the avalanche first impacts and then mobilizes a static 
layer of grains in front of the bump. This allows a normal shock wave to propagate upslope 
until it finds a stable location. The subsequent oncoming flow is dramatically slowed by the 
upstream shock and forms a subcritical flow that transitions back to supercritical as it flows 
over the bump. Importantly, however, the flow does not detach from the obstacle. 

 
Figure 1 An experimental avalanche flowing over a smooth bump (a,b) for the same upstream 

Froude number Fr = 7.6. A numerical simulation (c) for the case when there are 
static grains upstream and a normal shock forms (Viroulet et al. 2017). 
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The jet and the upstream shock solutions represent two steady states of the system. It is 
possible to flip between the two, by either momentarily blocking the jet or by scraping away 
some of the subcritical material. The terrain-following avalanche theory (1-3) is able to 
predict when the normal traction is equal to zero and hence when the avalanche takes off. The 
flying grains can then be treated as an inviscid jet (Hákonardóttir et al. 2003; Johnson et al. 
2011) or by following the ballistic trajectories of the grains (Viroulet et al. 2017).  

It is also possible to derive an exact solution, for the case when a normal shock forms 
upstream of the bump, using both the terrain-following theory and a more conventional 
avalanche model in which the height of the topography is prescribed by 𝑂𝑂 = 𝑏𝑏(𝑂𝑂) above an 
inclined plane at an angle 𝜁𝜁 to the horizontal. The critical point ( Fr = 1) plays a crucial role 
in determining a unique position for the steady-state shock in both cases. Unlike some 
conventional avalanche models the terrain-following theory is able to match the experimental 
shock position for a wide range of inclination angles, using the same frictional parameters, 
making this problem a sensitive test case. Using shock-capturing numerical methods 
(Kurganov and Tadmor, 2000) it is possible to simulate the evolution towards the steady state 
(Fig. 1c) including the impact with, and mobilization of, the static grains in front of the bump. 

3. WEAK, STRONG AND DETACHED OBLIQUE SHOCKS 
There are also multiple steady states for the flow of an avalanche past a deflecting wedge as 
shown in Fig. 2(a,b). For a sufficiently high upstream Froude number Fr1 and low wedge 
deflection angle 𝜃𝜃 (see Fig. 2c) the jump conditions (4-5) imply that the shock deflection 
angle 𝛽𝛽 can either be small, which is known as weak shock, or large, which is known as a 
strong shock (Rouse 1938, Ippen 1949, Gray et al. 2003, Hákonardóttir, K. M., Hogg, 2005, 
Gray and Cui 2007, Vreman et al. 2007, Akers et al. 2008). Weak shocks tend to form 
naturally if there is no downstream resistance to motion, but strong shocks can be triggered by 
temporarily blocking the flow or if the constriction is sufficiently small. Strong shocks are 
potentially very interesting for the design of avalanche protection structures, because the 
decreases in velocity and the increase in thickness across them is much greater than for weak 
shocks, so they dissipate a lot of energy. When the incoming Froude number Fr1 is too low or 
the wedge angle is too high then there are no steady-state solutions that are attached to the 
wedge tip and a detached oblique shock forms upstream instead. 

4. BOW SHOCKS AND GRAIN FREE REGIONS 
For flows around cylinders (Fig. 3) the shock always detaches from the obstacle and forms a 
bow shock upstream of it. There is a stagnation point on the cylinder, where the velocity is 
zero, which implies there is a rapid deceleration as the grains as they pass through the shock 
and the subcritical region upstream of the cylinder. As the grains move around the obstacle 
the flow becomes supercritical again and expands on the lee side. The internal pressure is not 
sufficient to immediately push the grains around the lee side of the cylinder and a void opens 
up that is completely grain free. The lateral pressure gradients pushing in from either side 
slowly close the void with increasing downstream distance as shown in Fig. 3(a,b). Shock-
capturing numerical simulations (Cui and Gray 2013) using the avalanche equations (1-3) on 
an inclined plane, with a no penetration condition on the cylinder walls, are able to capture the 
time-dependent development of the flow around the obstacle, as well as the downstream 
closure of the grain-free region, and closely match the steady-state solution (Fig 3c) . 
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Figure 2 Oblique views of (a) a strong shock and (b) a weak shock for a flow at 𝐹𝐹𝑟𝑟1 = 5 that 

is deflected by wedge at an angle 𝜃𝜃 = 20𝑜𝑜 (Gray and Cui 2007). Provided Fr1 
(indicated by the numbers in c) is sufficiently high and the wedge angle 𝜃𝜃 is low 
enough, there is either a weak (solid lines) or a strong (dashed lines) solution for 
the shock deflection angle 𝛽𝛽. If the incoming Froude number is too low then the 
shock detaches (Gray and Cui 2007, Cui, Gray and Johannesson 2007). 

 

 
Figure 3 (a) Oblique and (b) overhead views of a supercritical flow of dry sand past a cylinder 

for 𝜁𝜁 = 36o and Fr = 6. A bow shock forms upstream of the cylinder and a grain 
free (vacuum) region forms on the lee side. (c) Computed contours of the 
avalanche thickness using a depth-averaged avalanche model. The vacuum region 
is shown in white (Cui and Gray 2013). 
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5. BLUNT OBSTACLES AND THE FORMATION OF STATIC DEAD ZONES 
When the obstacle has a blunt face, the avalanche can spontaneously form a dead zone 
adjacent to the obstacle, in which there is no flow, as shown experimentally for the pyramidal 
obstacle in Fig. 4(a,b). As a result the incoming flow is deflected by the dead zone, rather than 
the obstacle itself, and a detached bow shock then forms upstream. Shock capturing numerical 
simulations that define the topography in terms of its height 𝑂𝑂 = 𝑏𝑏(𝑂𝑂, 𝑂𝑂) above the inclined 
plane are able to quantitatively capture both the formation of the dead zone and bow shock, as 
well as the fact that most of the grains in the dead zone are left on the upstream face of the 
pyramid when the flow ceases.  The small airborne region of grains flowing over the pyramid 
faces (Fig. 4a) is not captured by the theory (Fig.4 c), but the predictions for both the flow and 
the grain free region on the lee side are not adversely affected. 

 

 
Figure 4 The formation of a shock and a static dead zone (Gray, Tai and Noelle 2003) 

upstream of the pyramidal obstacle in experiment (a,b) and simulation (c,d). The 
downslope direction is from left to right.  

6. CONCLUSIONS 
The depth-averaged terrain-following avalanche equations (1-3) provide a useful framework 
for computing the flow around many types of obstacle (Gray et al. 1999, 2003, Viroulet et al. 
2017). The model is able to realistically capture key phenomena of rapid avalanches, such as 
multiple steady states and the formation of normal, oblique and detached shocks, grain-free 
regions as well as static dead zones. The theory can also solve for the point at which a flow 
will detach from the ground. An inviscid fluid (Hákonardóttir et al. 2003) or ballistic model 
(Viroulet et al 2017) can be used to solve for the trajectory of the jet. However, there is still 
much that is not understood about the dissipation that occurs when the jet lands (Johnson and 
Gray 2011) and forms an avalanche downstream of the obstacle. 
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