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ABSTRACT
A new operational quantitative procedure for estimation of snow avalanche risk in residential
areas, measured as annual probability of being killed, is described. In its present form it is
tailored to high hills with some avalanche history, and it is based on a data set of 196 Ice-
landic avalanches in 81 paths. It makes use of the notions of transferring avalanches between
slopes by a physical model (presently a PCM model), and a path independent measure of
runout distance, so-called runout index, associated with a specific standard path. Detailed data
on the fatalities caused by the avalanches on Súðavík and Flateyri in northwestern Iceland in
1995 is presented and used to derive an empirical relationship between avalanche speed and
survival rate, a further ingredient in the method. Two examples of the application of the pro-
cedure are presented. It is argued that an acceptable annual death rate due to avalanches is
0.3⋅10–4 for living houses. A noteworthy preliminary result is that this corresponds to a return
period in the range from 3000 to 8000 years.
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1 INTRODUCTION

This report explains a hazard zoning method that was first developed at the Science Institute,
University of Iceland in 1995-1996 and has been used and further developed at the Icelandic
Meteorological Office since mid-year 1996 when two of the authors (KJ and ÞA) moved from
the University to there. The work was initiated in reaction to an avalanche falling on the NW
Iceland town Súðavík on January 16, 1995, killing 14 people. Most of the houses hit were in
an area marked “safe” on the official avalanche hazard map. Work on the zoning method es-
calated when an avalanche fell on the neighbouring town Flateyri on October 26, 1995, killing
20 people. All were in the “safe” area.

The method is for assessment of avalanche risk in residential areas. The key aspects of the
approach are:

• To measure the avalanche hazard by calculating the probability of being killed in an ava-
lanche if one lives or works at the place under consideration for a given length of time. We
do not deal with economic risk, as the avalanche risk to human life is dominant in Iceland
and probably in most other countries.

• To relate the probability of surviving an avalanche inside a house at a given site directly to
the speed of the avalanche. This relation is based on data from the 1995 avalanches in
Súðavík and Flateyri. These avalanches damaged 32 houses where 93 people were staying
and, as stated above, 34 of these people were killed.

• To split the estimate of the probability that an avalanche will reach a given site into two
separate parts: i) the estimate of the frequency at which an avalanche will run beyond a
specific reference point above the site, and ii) the estimate of the distribution of runout
distances of avalanches that exceed the reference point. The latter estimate clearly requires
more data, which are obtained by transferring recorded avalanche runout distances from
many avalanche paths. The former estimate can be based on more local records.

• To transfer runout distances between paths using physical models. In particular this allows
direct estimates of the speed at which an avalanche would hit a house located in its path.

• To introduce a slope independent measuring scale for runout distance, so-called runout in-
dices, that are based on runout distances transferred to a specified standard path. These al-
low data from different slopes to be dealt with in a unified manner and facilitate the esti-
mate of the runout distance distribution.

Thus a central assumption is that there exists a scale of runout distances, at least for ava-
lanches typical of those in the underlying data set, so that the distribution of runout distances
according to this scale, beyond a given reference distance, is independent of the location of
the slope, the shape of the slope, and the frequency of avalanches.

The method is best suited to calculating the risk due to avalanches under hillsides that have
some history of avalanches. It may also be used for setting an upper limit on the risk when
there are no recorded avalanches. Moreover, the current method is tailored to high hills, firstly
because the avalanches of Súðavík and Flateyri both came from fairly high hills, and secondly
because the distribution of runout distances is estimated with high hills in mind. Data from the
Súðavík and Flateyri accidents were used to estimate the probability of survival (in both cases
the fall height was about 600 m). We have been unwilling to use the method for lower hills
than about 350 m.
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Estimation of risk due to natural and man-made hazards has been given substantial research
attention in recent decades. Some of the hazards that have been considered are earthquakes,
meteors (e.g. Chapman and Morrison 1994), nuclear accidents, and aeroplane crashes on
towns (e.g. Evans et al. 1997). Until now little work has been done on the direct estimation of
avalanche risk to human life. The focus has been on the estimation/calculation of the probable
maximum runout distance in a given length of time, but the relation of these estimates to
probable loss of human life has been somewhat unclear. Of this nature are the Swiss hazard
zoning procedure (see Salm et al. 1990), the runout ratio method of McClung and his co-
workers (e.g. McClung et al. 1989) and the alpha-beta model developed at the Norwegian
Geotechnical Institute (e.g. Bakkehøi et al. 1983). The latter two methods may be regarded as
ways of transferring avalanches between paths, which is an important ingredient to the cur-
rent work. They differ from the transfer methods of our approach in that they are based on
topographical considerations rather than physical models. The Swiss procedure, on the other
hand, makes use of similar physical models as our approach, but they are used to relate possi-
ble snow-depth in starting zones to runout distance.

Recently two interesting dissertations on avalanche risk have been written by Christopher
Keylock (1996) and Christian Wilhelm (1997). A paper based on Keylock’s dissertation has
also been written (Keylock et al. 1998). Keylock gives a procedure for estimating avalanche
risk based on McClung’s runout-ratio method. Runout distance data of 195 long Icelandic
avalanches are used, together with data from two avalanche paths in Canada both with a large
number of recorded avalanches, all relatively short. Using Gumbel statistics the distribution of
runout distances and the risk of death at a particular place are estimated. While making use of
similar data as in our work, Keylock’s work was carried out independently and differs in
many aspects. Wilhelm’s main focus is economic risk, but risk to life is also considered. His
work is not based directly on the distribution of runout distances and the associated depend-
ence of death probability on runout distance. He does however give an estimate of the risk in
the differently coloured Swiss hazard zones and his numbers corroborate our findings to a de-
gree.

This report is a thorough revision of an earlier report (Jónasson and Arnalds 1997) and our
work on avalanche transfer methods has been described in (Sigurðsson et al. 1998). Several
other reports have been written during the course of the method development, but these are all
in Icelandic and we do not include them in our reference list. We wish to thank our primary
collaborators, Gunnar G. Tómasson, Kristín Friðgeirsdóttir, Harpa Grímsdóttir and Tómas
Jóhannesson.

In Chapter 2 we discuss risk and its measurement, address the question of what level of risk
should be deemed acceptable, and mention the connection between risk and avalanche return
period. In Chapter 3 the idea of transferring avalanches between paths is developed. In Chap-
ter 4 we define runout indices and describe how their distribution may be calculated. From
this distribution the distribution of runout distances is readily obtained. Chapter 4 also dis-
cusses the need to correct the calculated runout index distribution by estimating the proportion
of avalanches recorded at each runout index and a rudimentary approach to estimating this
proportion is described. In Chapter 5 we discuss survival probability, and estimation of local
frequency in Chapter 6. Finally, in Chapter 7, the threads are tied together and formulae for
calculating avalanche risk are presented. Chapter 7 also discusses some of our experimenta-
tion with the methodology, including examples of its use in two Icelandic towns.
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2 RISK

Sometimes the word risk is used to mean hazard that has been measured or quantified and we
shall use it in this sense here. We shall in this chapter discuss risk and explain why we base
our hazard zoning method on estimating the probability of being killed in an avalanche. We
also discuss how high an avalanche risk should be tolerated.

2.1 Measures of risk
Before embarking on the measurement of risk one must agree upon a unit to use. There are
several possible definitions of this unit. One might measure the return period of avalanches,
the expected value of property lost in avalanches (economic risk), the expected number of
people killed in the area in a given time period, and finally one can measure individual risk as
the annual probability of being killed in an avalanche if one lives or works in a building under
a hazardous hillside. The last definition is the chosen one, but to make it workable one must
first specify the type of building and secondly the proportion of the time spent inside the
building. Most of the houses in the avalanche hazard towns in Iceland are fairly weak timber
or concrete houses with relatively large windows facing the mountain side. In the work pre-
sented here such a house is assumed. As a reference value we then calculate the risk based on
the person being present in the building 100% of the time, and refer to this as calculated risk.
This is the same unit as that chosen in the aeroplane crash risk report (Evans et al. 1997).

2.2 Exposure
The probability of being killed is found by multiplying the calculated risk with an estimate of
the exposure, that is, the probability that the person is at home or at work when the avalanche
strikes. The exposure depends on the age of the person and the type of the building. For living
houses it might be as high as 75% for children but lower for adults. For work places it is
lower than for houses, maybe about 30%, and it will be lower still in summer cottages (often
less than 5%). This difference is the main reason for not including the exposure in the calcu-
lated risk.

2.3 Acceptable risk
Associated with risk measurement is the concept of acceptable risk. Having estimated the risk
at each point in a given area the risk value considered acceptable will define the limits of the
hazard zones. A common method of determining the acceptable risk level due to a particular
hazard is to compare it with other risks. Following the 1995 accidents the acceptable level of
avalanche risk has been much discussed in Iceland and regulations for the assessment of ava-
lanche hazard and utilisation of risk areas have been under construction. This work is now in
the final stages and the proposed regulations state that for living houses the calculated risk
level 0.3·10–4 is acceptable, for work places 1·10–4 and for summer cottages 5·10–4. For Ice-
landic children aged 1–15 years the yearly death rate from all causes is approximately 2·10–4,
about half of this is due to accidents and the other half due to illness. About 40% of the fatal
accidents are traffic accidents. Assuming a 75% exposure the avalanche hazard on the accept-
able risk line will add 0.225·10–4 or 11% to the death rate of children. In areas carrying this
risk the expected number of children killed in avalanches will be about half of the expected
number of traffic victims. This comparison assumes that children are as likely as adults to be
killed by avalanches, which has been the case in Icelandic avalanche accidents. The accept-
able risk for work places has been justified by a similar comparison. It is higher than for
homes both because the exposure at work places is lower than at homes and because the adult
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death rate is higher than for children. We summarise these numbers along with a few added
details in Table 1.

Deciding Annual Increase in death rate
Type of Acceptable age death Exposure due to avalanche hazard

building risk group rate Absolute Relative Assumption behind death rate increase

Living house 0.3·10–4
1-15 yrs 2·10–4

75% 0.22·10–4
11% The school is safe

Work place 1·10–4
15-30 yrs 7·10–4

30% 0.48·10–4
7% The home is on a 0.3·10–4 line and 60% of the time is spent there

Summer cottage 5·10–4
1-15 yrs 2·10–4

5% 0.25·10–4
12% The home and the school are safe

Table 1. Details of acceptable risk.

2.4 Return period as a measure of risk
In Norway regulations state that new houses shall not be built where avalanches fall more fre-
quently than once every 1000 years (Lied 1993). In Switzerland the limit of the hazard zone is
set at the tip of a 300 year avalanche (Salm et al. 1990), but the Swiss return periods are not
entirely comparable to the Norwegian ones. Firstly, the avalanche may pass the house without
hitting it and secondly the runout distance of the 300 year avalanche is in practice calculated
from an estimated 300 year maximum of 3 day snow fall in the starting zones and this ex-
treme snow fall does not necessarily produce an avalanche each time. In fact there are some
grounds to believe that the actual limits of the hazard zones both in Norway and in Switzer-
land correspond to a return period somewhat higher than 1000 years (meaning that a house on
the limits will be hit by an avalanche more seldom than once every 1000 years).

The relation between avalanche frequency and risk depends on several things. The two most
important factors are probably hill height (and thus size and speed of a big and rare avalanche
from the hill) and frequency of avalanche release. To name a few other determinants, path
confinement, aspect of the hillside and slope of the starting zone might also affect this rela-
tion.

For a very low hill most avalanches are not very deadly. One can easily envisage a house un-
der a low hill which is hit or touched by a small avalanche every 500 years, but the risk of
being killed in avalanches hitting the house is so low that the house is actually on the accept-
able (0.3·10–4) risk line. Under high hills we would expect the risk on the 500 year line to be
much higher.

We shall see in Section 7.5 that the 0.3·10–4 risk line as given by the method described in this
report corresponds on average to about the 5000 year line. For the currently used runout index
distribution this varies greatly depending on the frequency of avalanches and can for high
hillsides range from 3000 years where avalanches are more frequent to 7000 years or more for
hillsides where avalanches seldom fall. This variability indicates that return periods are not a
good unit for measuring risk, and this assertion is reinforced by the fact that using return peri-
ods makes comparison with other hazards difficult.

3 TRANSFERRING AVALANCHES BETWEEN PATHS

One of the major tasks in hazard zoning is estimating the possible runout distances of ava-
lanches that come very seldom indeed as the numbers of the previous section indicate. Ava-
lanche records in most of the housing areas under consideration in Iceland only go back about
100 years and therefore it is impossible to base the frequency estimation of long avalanches
that come every several thousand years on local history alone. By combining the avalanche
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history of many paths one may however imagine that one path has been observed for a long
time rather than many paths for a short time. To make this possible one must be able to tell
how far an avalanche that has fallen in a given path would reach in another path. In other
words one needs a method that enables the transfer of avalanches between paths.

This concept is developed in Sigurðsson et al. (1998). In particular, the Norwegian alpha-beta
model, as well as the runout ratio method of McClung referred to in the introduction may be
considered as examples of topographical transfer methods. Jóhannesson (1998b) has devel-
oped an alpha-beta model for Icelandic avalanches and fitted runout ratios to a Gumbel distri-
bution using the longest avalanches in each path. As also mentioned in the introduction Key-
lock (1996) has constructed a similar runout ratio fit for Icelandic avalanches, where he takes
into account all known avalanches in each path, rather than just the longest one. An alpha-beta
model for Austrian avalanches is discussed by Lied et al. (1995).

By contrast we have developed so-called transfer methods based on physical models. One of
the advantages of using a physical model to transfer avalanches is that it enables direct esti-
mation of the speed profile of an avalanche, i.e. its speed at each point along its path, which in
turn is needed for the calculation of risk. Some authors (e.g. McClung 1990) have argued that
due to the sensitivity of runout distances calculated by physical models to changes in the pa-
rameters one should first use topographical methods to estimate runout distances and then use
physical models for speed estimates. By using physical models to transfer runout distances
from a large data set and then treating the transferred values statistically, this sensitivity is
however less of an issue.

3.1 The avalanche data set
We have worked with a data set of 196 avalanches recorded in Iceland. The data were com-
piled by Kristín Friðgeirsdóttir at the University of Iceland in 1995–1996. The avalanches fell
from 81 different paths in about 50 different hillsides, and 34 of the avalanches fell into the
sea. The oldest ones fell just over 100 years ago. Some of the paths have a shorter observation
history and it cannot be far off to guess that the average observation period is about 80 years.
The data set contains 23 pieces of data about each avalanche, for instance path name, date,
stopping position and width. The path profile is also recorded. The data set is based on ava-
lanche maps and lists obtained from the Icelandic Meteorological Office, covering 8 Icelandic
towns and villages. All avalanches shown on these maps were included in the data set. The
maps cover the period until 1989, though a few later avalanches were also included.

3.2 Avalanche transfer by the PCM model
Our physical transfer methods have so far been based on the simple PCM model for avalanche
flow, with two free parameters, the Coulomb resistance parameter µ, and the mass-to-drag
parameter M/D (see Perla et al. 1980). It should be noted, however, that we separate the cur-
vature term, κ, from the M/D term in the PCM model, i.e. the differential equation of the
model is

22 )
/

1
()cos(sin)(

2

1
u

DM
gu

ds

d +−−= µκθµθ

where u denotes the speed of the avalanche, s the distance along the path, θ its slope and g the
gravitational acceleration. The equation is solved numerically from its integral representation.
The θ-value at distance s is taken to be the mean slope between distances s – L/2 and s + L/2
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for a specified reference length L. The radius of curvature, 1/κ, is the radius of the circle tan-
gent to the lines between distances s – L/2 and s on one hand and s and s + L/2 on the others,
at their midpoints. The calculation starts at distance L/2 from the estimated avalanche break-
line, and the end of the avalanche is taken to be at distance L/2 beyond the calculated stopping
point. For the present study we have taken L to be 75 m in all cases.

The determination of the input parameters, µ and M/D, is difficult because an infinite number
of pairs can explain a given avalanche runout in a given path. Increased friction can be com-
pensated by increased mass-to-drag (decreased drag). The curves in Figure 1 represent differ-
ent pairs of coefficients that can explain a few avalanches in the Icelandic data set. Such a
curve is called an isorunline for the corresponding avalanche.

In the case of an avalanche falling into the sea, the isorunline corresponds to the seashore, and
any parameter pair between the isorunline and the M/D-axis may explain the avalanche.

The complication of several different parameter pairs explaining a given avalanche can be
overcome by selecting a line of likely parameter pairs through the parameter space. This line
is called the parameter axis. The intersection of the parameter axis and the isorunline of an
avalanche gives the parameter pair used to explain the avalanche. Figure 2 shows the pa-
rameter axis that we have used and the isorunlines for all 196 avalanches in the data set. If the
runout distances of two avalanches in different paths can be explained by the same parameter
pair (i.e. if the corresponding isorunlines intersect the parameter axis in the same point) then
the two runout distances are considered to be equivalent, and one can be transferred to the
other. By a classification scheme introduced in Sigurðsson et al. (1998) we refer to this trans-
fer method as a PCM-1 method. Using a parameter axis in this way means that a single pa-
rameter pair corresponds to each runout distance and through the PCM model a unique speed
profile is obtained for an avalanche stopping there.
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Figure 1. Isorunlines for a few well known Icelandic avalanches.
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Figure 2. Isorunlines for 196 Icelandic avalanches and the parameter axis.

Another way of justifying the use of a parameter axis is as follows: Assume that the parame-
ters µ and M/D follow a joint probability distribution that is independent of the avalanche
path, and that when an avalanche falls, its properties are determined by selecting parameter
values at random from this distribution. The probability that an avalanche travels further than
a given runout distance, its runout probability, will be given by the fraction of the probability
mass of the distribution that is between the corresponding isorunline and the M/D-axis. Two
avalanches will be equally likely if their runout probabilities are the same. The most likely
parameter pair explaining an avalanche will then be the maximum point of the joint density
function on the isorunline of the avalanche. We could select a parameter axis that approxi-
mates the locations of these maximum points for all avalanches in a collection. Because the
isorunlines are approximately parallel this choice of parameter axis will ensure that two ava-
lanches with equal runout probabilities will be approximately equivalent, in the sense that the
points of intersection between their isorunlines and the parameter axis will lie close to one
another.

It is possible to use runout probability to define the equivalence of avalanches and base the
transfer method on that. In Sigurðsson et al. (1998) we refer to such an approach as a PCM-3
transfer method. The parameters of an appropriate bivariate parameter distribution can be es-
timated from the isorunlines using maximum likelihood criteria. Furthermore one can take
into account in a consistent manner the case where additional measurements of an avalanche
restrict the choice of parameters that can explain its runout distance. We have tried this idea
out on the questionable assumption that the underlying distribution is bivariate normal, using
data on avalanche depth in the starting zone to fix the parameter pair for a few avalanches on
the equally questionable assumption that the M/D-parameter is proportional to that depth.
However, it turns out to be crucial for the stability of the maximum likelihood estimation
method to have some such fixed pairs. Thus this approach has yet to lead to reliable estimates
of the parameter distribution. Another possibility of fixing the parameters would be to make
use of direct or indirect speed measurements of an avalanche, since different parameter pairs
on the same isorunline correspond to different speed profiles. But even if more reliable esti-
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mates could be obtained it seems doubtful that the extra computational effort in the PCM-3
transfer method would be justified in terms of increased accuracy. Better parameter estimates
would, however, be valuable for identifying an appropriate parameter axis in the PCM-1
method, as discussed below.

3.3 Choice of parameter axis
In the absence of a reliable parameter distribution estimate, we may turn to the literature to
see what parameter values have been used elsewhere in avalanche simulations with the PCM
model. These simulations usually deal with the longest recorded (or longest “likely”) runout
distance in a path. Perla et al. (1980), introducing the PCM model, used data from Canada and
USA and suggested that µ should be in the range 0.1 to 0.5 and M/D in the range 100 to
10000 m. More recently McClung (1990), taking a somewhat different view of the physical
assumptions behind the model, suggests that the µ-values may exceed 0.5 and that typical
M/D-values are in the upper part of the bracket. Workers at NGI deduce from simulations of
avalanches in Norway and Austria that typical µ-values are in the interval [0.15, 0.35] and
that for avalanches in Norway one should set M/D = 0.5⋅H and for those in Austria M/D =
0.8⋅H, where H denotes the height of the path, typically in the range from 600 to 1200 m
(Lied et al. 1995). Finally, in the analogous VSG-model used in Switzerland the value of µ
ranges from 0.155 for large dry avalanches to 0.30 for wet ones, and while the model is not
based on a fixed M/D-parameter the corresponding values are typically in the range from 200
to 600 m (Salm et al. 1990).
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Figure 3. Root mean square deviation between PCM-predicted α-value and recorded α-
value.

For the Icelandic data set and for different (M/D, µ)-parameter values, we have calculated the
mean square deviation between the actual α-angle of a runout distance and the α-angle cal-
culated with the PCM model (α = arctan(H/x) where H denotes the height of the avalanche
and x its horizontal runout distance). Avalanches falling into the sea have been “spread over
the sea” in a manner consistent with the assumption that these deviations are normally distrib-
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uted. As an example of such spreading, see Jóhannesson (1998b). The results are shown in
Figure 3 where the contour lines are marked with the square-root of the corresponding mean
square deviation (in degrees). The minimum occurs at approximately (M/D, µ) = (1500 m,
0.375). These values are somewhat high compared with those quoted from the literature, but it
should also be noted from the figure that the mean square deviation will not increase signifi-
cantly if the parameters values are decreased to e.g. (500 m, 0.30). Furthermore the sensitivity
of changes in α-values to changes in the parameter values differs between slopes, and ideally
this should be taken into account by introducing suitable weights for the deviations (with less
weight on the slopes where the sensitivity is large). An advantage of the maximum likelihood
estimation referred to in the previous section is that it implicitly takes care of this.

Guided by all these considerations the parameter axis has been chosen to go through (M/D, µ)
= (500 m, 30) with the equation

(1) µ = 0.6 – 0.0006 M/D.

On this axis the avalanches in our data set range between (M/D, µ) = (109 m, 0.534) and (828
m, 0.103). Some typical values of (M/D, µ) on the axis are presented in Table 2.

M /D 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
µ 0.54 0.51 0.48 0.45 0.42 0.39 0.36 0.33 0.30 0.27 0.24 0.21 0.18 0.15 0.12 0.09

Table 2. Pairs of (M/D, µ) on the parameter axis.

For comparison two other parameter axes were tried, one of them going through the minimum
point referred to above, and the effect on hazard estimates was calculated. This comparison is
detailed in Section 7.4.

For simplicity’s sake we have chosen to use a straight line for the parameter axis. A disad-
vantage of using a straight parameter axis is that extremely long or short avalanches cannot be
explained, because their isorunlines will not intersect the axis. A better choice may be a hy-
perbola-like line that would asymptotically approach the µ-axis for small M/D and the M/D-
axis for small µ. Note however that all 196 avalanches in the collection can be explained by
the chosen straight parameter axis.

It should further be noted that in the absence of the curvature term and the drag term in the
PCM model, the ratio between the calculated height of the avalanche, H, and the calculated
horizontal runout distance, x, will simply be µ. The implication is that if the parameter axis is
chosen far to the right (corresponding to large M/D) the length of an avalanche will simply be
characterised by its α-angle.

4 RUNOUT INDICES

4.1 The standard path
To accomplish a descriptive uniform runout distance scale a standard path that is representa-
tive for the Icelandic (and to some extent Norwegian) avalanche paths has been defined. An
avalanche can be transferred to the standard path, and the (horizontal) runout distance there
measured in hectometres defines the runout index of the avalanche. The standard path is
shown in Figure 4. It is parabola shaped, 700 m high and reaches level ground 1600 m from
the starting point. The equation for it is
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To calculate the runout index of an avalanche, find the (M/D, µ) pair on the parameter axis
that makes the PCM simulated avalanche stop in the correct place. A simulated avalanche
with this parameter pair is then initiated at the top of the standard path, and its stopping posi-
tion gives the runout index. Table 3 contains a list of the 10 avalanches in the data set with the
highest runout indices.
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Figure 4. The standard path.

Town Path Year Runout index

Flateyri Skollahvilft 1995 18.8

Ísafjörður Seljalandsdalur, old ski hut 1994 17.0

Flateyri Skollahvilft 1953 16.9

Flateyri Innra-Bæjargil 1974 16.9

Neskaupstaður Brynjólfsbotnagjá 1936 16.9

Súðavík Traðargil 1995 16.6

Neskaupstaður Gully below Gunnólfsskarð 1990 16.5

Neskaupstaður Bakkagil 1974 16.4

Súðavík Traðargil 1994 16.4

Neskaupstaður Ytri Sultarbotnagjá 1885 *16.3

Table 3. The ten longest avalanches in the Icelandic data set. The avalanche marked with *
fell into the sea.

4.2 Combined avalanche history
By transferring all the avalanches in the Icelandic data set to a single slope we can imagine
that we have a 4000 year observation period there instead of having watched 50 paths for 80
years. Continuing along this track it would be possible to estimate the frequency of ava-
lanches that reach a given runout index by counting the number of avalanches in the data set
that have a longer runout after being transferred. For instance, there are 7 avalanches with a
runout index of 16.5 or higher giving an average return period of 4000/7 ≈ 570 years.

Such a direct calculation has several flaws. Firstly, the overall frequency of avalanches on dif-
ferent hillsides is different. Even if all of the hills had the same runout index distribution and
all avalanches with runout index above 16.5 have been recorded, the above calculation will
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only be valid on a hill where the frequency of avalanches is equal to the overall average of the
50 hills.

A second flaw is that not all avalanches on the slopes in the data set during the last 80 years
have been recorded, and the recording of avalanches is not uniform. A long avalanche is more
likely to have been recorded than a short one. This is the problem of the missing avalanches,
dealt with in Sections 4.3 and 4.4.

Third, some of the avalanches have gone into the sea. For these avalanches, all we know is
that their runout index has exceeded the runout index at the foreshore. This problem is techni-
cal and not very difficult. It has been solved by “spreading the avalanches over the sea” in a
consistent manner.

Fourth and finally, the runout index distribution need not be the same in all the hillsides. Even
if the overall frequency in a path is high, it does not necessarily follow that the frequency of
long avalanches is also high. For some avalanche paths a long runout might be impossible. In
our present approach this problem has simply been ignored and a global runout index distri-
bution has been assumed, one that we apply to every high hillside in Iceland. The data avail-
able are not extensive enough to classify the hillsides and estimate separate distributions for
the different classes.

4.3 Distribution of runout indices
Using a statistical procedure known as kernel estimation (e.g. Silverman 1986), the combined
history of avalanches after transfer to the standard path can be used to estimate a probability
distribution of runout indices. Figure 5 shows the estimated density function with a histogram
of the runout indices superimposed. Kernel estimation can be thought of as a smooth histo-
gram of the data. The degree of smoothness depends on the width of the basis kernel function
and after some experimentation a Gaussian basis function with standard deviation of 0.75
runout indices was selected. The reason the density function lies above the histogram near the
right end is that in the histogram sea avalanches are recorded as stopping at the coastline,
whereas in the density function they have been “spread over the sea” in a manner consistent
with the derived distribution. Because of incomplete recordings of shorter avalanches the real
distribution of runout indices is quite different from the one shown in Figure 5. To emphasise
this we refer to the density function shown in Figure 5 as the data density and the corre-
sponding distribution as the data distribution. We denote the data density function by fD(r).

In order to obtain the density function of the real distribution of runout indices, first note that
we shall only be interested in the shape of this function for r above some suitable base index
R0. Thus we only need to estimate the probability of an avalanche with index r being recorded
when r ≥ R0, and we refer to this probability as the recording proportion at r. We further dis-
tinguish between the global recording proportion, which applies to the whole data set and is
denoted by p(r), and the local recording proportion in a particular path, denoted by q(r). The
local recording proportion comes into play in Chapter 6, when estimating avalanche fre-
quency. The real distribution of runout indices of avalanches reaching index R0 is given by

(2) ).()(
)()(

1
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0
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Figure 5. Runout indices of 196 Icelandic avalanches together with kernel estimated data
density function.

The function f does of course depend on R0. The exceedance probability that an avalanche
exceeding R0 will also exceed r ≥ R0 is given by

(3) ∫
∞

=
r

dttfrE )()(

where again the dependence on R0 is tacit. While the appropriate value for R0 may vary, it is
convenient for the presentation to fix a particular value, and we have chosen to set R0 = 13.
Note that this means that E(13) = 1.

We believe that the most reliable approach to obtaining the recording proportion in the main
hazard areas in Iceland is to use records of when houses were built. Physical evidence of ava-
lanches like broken trees is scant in Iceland, and until recently historical records of avalanches
have generally been restricted to those causing death or significant damage. We believe, how-
ever, that the records for the last century are relatively complete for avalanches with a runout
index above 16.
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Figure 6. Estimated proportion of recorded avalanches in Neskaupstaður, based on age of
houses. The narrow line is simply a smoothing of the staircase graph.
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We illustrate our approach by considering the town Neskaupstaður where such housing data
have already been prepared (Grímsdóttir 1998). There are 7 main avalanche paths with 20 re-
corded avalanches of runout index 13 or higher in the last century. Taking the age of individ-
ual houses under each gully into account we have estimated the local recording proportion
q(r) and the result is shown in Figure 6. To indicate how this was done, assume that a century
ago two houses were under a gully at runout index 16 and that these were the only houses un-
der the gully until 1950. Then a dense row of houses was built at runout index 14. The likeli-
hood of avalanches beyond 16 having been recorded in the first 50 years is thus high, 80% say
(the avalanche may have bypassed the houses without causing damage), but low if they are
shorter, 20% say for avalanches with indices 15–16 and 0% for even shorter ones. In the sec-
ond 50 years, when recordings were more systematic and not as restricted to avalanches
causing damage, we may assume that all avalanches beyond 14 have been recorded, and 80%
of those with indices 13–14. Assuming a uniform frequency of avalanches with time, the
overall estimate for the 100 year period  would be that beyond 16, the recording proportion is
90%, and between 15 and 16, it is 60%. From 14 to 15 it is 50%, and 40% between 13 and 14.
We shall not go into further details of how the estimate is obtained.

When similar housing data have been compiled for all the other main potential hazard areas
we shall be able to estimate p(r) by averaging locally estimated recording proportions
weighted with the number of recorded avalanches in each path. In the meantime we may re-
sort to a more rudimentary approach that we describe in the next section.

4.4 Rudimentary estimate of global recording proportion function
We have used data on avalanches in Flateyri and Neskaupstaður, which both have relatively
many recorded avalanches, to estimate the recording proportion function p. For Flateyri we
can utilise the work of Jóhannesson (1998a) where he estimates the distribution of runout
distances for all avalanches from the Skollahvilft avalanche path, the location of the cata-
strophic 1995 avalanche. For Neskaupstaður, on the other hand, we use the estimate of the
local recording proportion, q(r), discussed at the end of the previous section, together with the
distribution of recorded avalanches, to obtain a distribution of runout indices for all ava-
lanches. Having obtained these two separate estimates of the density function for all ava-
lanches, f (r), we proceed to assess p(r) using (2).

In Flateyri 14 avalanches with a runout index greater than 14.5 are recorded from the Skolla-
hvilft path. For this path, the avalanche records are believed to be fairly accurate for runout
indices greater than 14.5 and some information about the frequency of avalanches in the
runout index interval 13–14.5 is also available. Jóhannesson fits a Gumbel distribution to the
longest yearly runout distance and obtains the distribution function

(4)
baxeexD

/)(

)(
−−−=

where x is horizontal runout distance, a = 1354 and b = 97. For our purpose we need to meas-
ure the runout distance using runout indices. Using the data in Table 4 and linear regression in
the interval [14,20] we have changed the distribution (4) to depend on runout index and ob-
tained the distribution function

(5) DFlat = e e r a b− − −( )/

now with a = 13.3 and b = 0.925. The corresponding density function is

 fFlat(r) = DFlat(r) e
–(r–a)/b/b



20

and this is shown with a dashed line marked ‘Flateyri’ in Figure 9. Incidentally, (5) also gives
us a frequency estimate for Skollahvilft avalanches reaching r = 13, namely F13 = 1 – DFlat(13)
= 0.754 avalanches per year.

Runout index 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

Runout distance 1309 1374 1425 1471 1537 1591 1638 1686 1737 1790 1842 1896 1950 2004 2059

Table 4. Runout index vs. runout distance in Skollahvilft, Flateyri.

For 7 main gullies in Neskaupstaður, as said in the previous section, we have data on 20 ava-
lanches with r ≥ 13. Table 9 in Section 6.2 lists these avalanches. We use kernel estimation to
obtain the data density of the runout index of these avalanches in the same way as in Section
4.3 and the result is shown in Figure 7. As in Section 4.3 we have taken into account in an ap-
propriate way the fact that three avalanches went into the sea.
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Figure 7. Distribution of runout indices of 20 avalanches from 7 gullies in Neskaupstaður
together with kernel estimated density function.

If we divide this density function by the smooth curve of Figure 6 and normalise, we obtain
the estimate fNesk(r) of the density of all avalanches shown with a dash-dotted line labelled
‘Neskaupstaður’ in Figure 9.

By (2) the recording proportion, p(r), is equal to  fD(r) /(K f (r)) where K is a constant. We find
that for f(r) = (fFlat(r) + fNesk(r))/2 the function 1/p(r) is well described by a shifted normal den-
sity function of the form ),/)((1 σµφ −+ ra  where φ is the standard normal density. Note that
it is natural to select a function that tends to 1 as r goes to infinity. We have determined a, µ
and σ by restricting the fit to the runout index interval [13,18] and this gave a = 95.5, µ =
10.6, σ = 2.34 and K = 4.98 (note that K is not really a free parameter because given values of
a, µ and σ we may use (2) to determine K). Figure 8 and Figure 9 show the resulting fit.
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Figure 8. Recording proportion estimated from Flateyri and Neskaupstaður data together
with a smooth fit.
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Figure 9. Runout index density functions for Flateyri, Neskaupstaður, average of these and
corrected density found by smoothing the Neskaupstaður-Flateyri recording pro-
portion.

Table 5 lists the exceedance probabilities (3) for a few selected runout indices, together with
corresponding exceedance probabilities for the data density function fD.
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Runout 
index, r

Exceedance probability
Data distribution

Exceedance probability
Corrected distribution

13 100.00% 100.00%

14 69.35% 46.76%

15 43.07% 19.41%

16 21.33% 6.69%

17 7.40% 1.78%

18 2.09% 0.44%

19 0.62% 0.13%

20 0.10% 0.02%

Table 5. Runout index exceedance probability. Conditional probability that an avalanche
reaches runout index r given that it reaches r = 13. The second column applies to
recorded avalanches and the third column to all avalanches.

Keylock (1996) estimates the exceedance probability of Icelandic avalanches as a function of
runout ratio. A rough way of relating runout ratios and runout indices is to use the position of
the β-point of the standard path, i.e. the point where the slope is 10°, which is at 1278 m hori-
zontal distance from the start. This gives

(6) .1
78.12
indexrunout 

   ratiorunout −≈

In Figure 10 we reproduce the graph of Figure 2.12 of Keylock and superimpose our cor-
rected exceedance probability, calculated with (6) and multiplied so that the percentages agree
for r = 13. As an example of what can be read from this figure, our estimate of the proportion
of r > 13 avalanches that reach r = 18 is about ¼ that of Keylock (at r = 18 our line is about
0.6 grid-line interval below Keylock’s line and 1/100.6 ≈ 1/3.98 ≈ ¼).
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Figure 10. Comparison of present estimate of exceedance probability as a function of runout
ratio with the estimate of Keylock (1996).
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5 SURVIVAL PROBABILITY

In this section we consider the probability of surviving an avalanche striking a house. In fatal
avalanche accidents in Iceland the overall survival rate has been about two thirds. The prob-
ability of surviving is obviously not constant, it depends on the speed of the avalanche, and
probably other factors such as its wetness and size. Until now we have concentrated on the
dependence on speed, and ignored other factors. This does not mean that we believe their ef-
fect to be negligible, in fact some dependence of survival on avalanche size is high on our list
of possible improvements to the method.

5.1 The avalanches of Súðavík and Flateyri
The probability of a person surviving inside a house when an avalanche strikes at a given
speed has been estimated using data from the avalanches of Súðavík and Flateyri. These ava-
lanches damaged a total of 32 houses where 93 people were staying. Figure 11 and Figure 12
show the deposit outlines of both avalanches, the centre line of the avalanche path, and the
direction of the avalanche flow (dashed lines with arrows). House numbers are shown for
each house where people were staying at the time of the accident. The unnumbered houses
inside the avalanche deposit were empty, and thus do not contribute to our estimate of the
survival probability.

Figure 11. The outline of the 1995 avalanche on Súðavík and the centre line of the avalanche
profile. See Table 7 and main text for details. The drawing scale is 1:2500.
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Flateyri x [m] 0 75 175 250 350 425 500 575 675 750 800 875 975 1050 1200 1300 1425 1525 1600 1800

y  [m] 638 578 508 455 395 361 326 287 240 221 198 166 132 106 64 41 22 10 6 3
Súðavík x  [m] 0 25 125 175 225 275 350 400 450 500 550 625 700 750 800 925 1000 1150 1225

y  [m] 547 530 445 393 359 328 263 226 192 161 134 98 74 63 51 30 19 9 6

Table 6. The profiles of the Flateyri and Súðavík avalanches. The horizontal distance (x) is
measured from the avalanche breakline and the vertical distance (y) is height a.s.l.
The location of the lowermost parts of the profiles are shown in Figure 11 and
Figure 12. In Flateyri (centre of) Unnarstígur 6 is at x = 1791 m and in Súðavík
(centre of) Túngata 3 is at x = 1139 m.

As said previously we estimate the avalanche speed at a house by modelling the avalanches
using the PCM model. The profiles of the avalanches are given in Table 6. Ignoring the
breaking effect of the house in question and other houses further down, this speed depends on
the stopping point of the avalanche directly downstream from the house. To estimate the
breaking effect we have assumed that each row of houses that the avalanche passes shortens
its runout distance by the same amount. If an avalanche travelling on a flat surface has slowed
so much down that the mass-to-drag effect may be neglected, then, according to the PCM
model, the remaining distance is proportional to the square of the speed. Because the kinetic
energy is also proportional to the square of the speed, our assumption on a fixed shortening of
runout distance per row of houses corresponds to assuming that each row of houses reduces
the energy of the avalanche by the same amount.

To determine the shortening per house row, we have inspected the detailed shape of the ava-
lanche deposit, paying special attention to places where tongues of the avalanches have trav-
elled between houses, for example between Nesvegur 3 and Nesvegur 5 in Súðavík or be-
tween the houses on Ólafstún in Flateyri. Based on this inspection we have decided to use a
breaking distance of 20 m per house row (according to the PCM model with parameters on
the axis, the avalanche speed 20 m before stopping is about 7.5 m/s). For each house where
people were staying we have measured the distance from the centre of the house to the stop-
ping point downstream from the house. We have also counted the rows of houses that the
avalanche passes before stopping (including the row of the house in question). Table 7 lists
these numbers and also gives an overview of the number of people at home and the number of
people killed in the avalanches. The latter numbers were supplied by the local police who also
provided the maps showing the avalanche outlines.

The speed shown in Table 7 is our estimate of the speed of the avalanche when it hit the
house. It is found by the PCM model using the (µ, M/D) pair on the parameter axis of Section
3.3 that will make the avalanche stop d m downstream from the house, where d is the cor-
rected stopping distance of Table 7.
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Figure 12. The outline of the 1995 avalanche on Flateyri and the centre line of the avalanche
profile. See Table 7 and main text for details. The drawing scale is 1:2500.
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House
Rest 

distance 
[m]

Rows of 
houses 
below

Corrected rest 
distance, d

[m]

Avalanche 
speed [m/s]

People 
at home

People 
killed

Flateyri Hafnarstræti 41 50 1 70 13.5 3 2

Hafnarstræti 43 75 2 115 17.7 2 0

Hafnarstræti 45 100 3 160 21.5 3 3

Hjallavegur 2 60 1 80 15.0 1 0

Hjallavegur 4 65 2 105 17.3 5 0

Hjallavegur 6 100 3 160 21.6 1 1

Hjallavegur 8 150 4 230 26.0 4 3

Hjallavegur 10 170 3½ 240 26.7 5 5

Hjallavegur 12 170 3½ 240 26.7 1 1

Tjarnargata 3 110 2 150 20.8 2 2

Tjarnargata 7 0 1 20 7.2 2 0

Unnarstígur 1 75 1½ 105 16.7 5 0

Unnarstígur 2 115 2½ 165 21.7 3 2

Unnarstígur 3 45 2 85 15.2 4 0

Unnarstígur 4 90 2 130 19.3 3 1

Unnarstígur 6 0 1 20 7.1 1 0

Súðavík Nesvegur 1 35 2 75 15.5 3 0

Nesvegur 3 0 1 20 7.7 4 0

Nesvegur 5 0 ½ 10 6.0 4 0

Nesvegur 7 30 1½ 60 14.4 4 2

Njarðarbraut 10 20 1 40 10.7 1 1

Njarðarbraut 18 0 1 20 7.5 1 0

Túngata 1 35 2 75 15.5 2 0

Túngata 3 75 2 115 19.2 3 0

Túngata 4 115 3 175 24.1 4 1

Túngata 5 100 1 120 18.8 4 3

Túngata 6 140 2 180 24.1 2 2

Túngata 7 35 2 75 14.6 4 2

Túngata 8 75 3 135 20.1 4 3

Túngata 9 0 ½ 10 5.2 4 0

Túngata 10 0 1 20 7.5 1 0

Túngata 12 0 ¼ 5 5.2 3 0

Table 7. Stopping distance, number of breaking house rows, PCM estimated avalanche
speed and number of people killed in the avalanches of Flateyri and Súðavík. To
correct the stopping distance, 20 m have been added for each house row.

5.2 Maximum likelihood estimate of the survival rate
Figure 13 shows the fraction of people surviving as a function of speed both by a histogram
and by a smooth curve.

The curve is continuously differentiable, and its formula is

(7)
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Figure 13. The dependence of survival rate in Flateyri and Súðavík on the avalanche speed.
The numbers in the bars show the total number of people at home for each speed
group and the height of the bars gives the proportion surviving. For instance,
25% or 4 people out of 16 survived in the 24–28 m/s speed group.

where k = 0.00130, c = 0.05, a = 1.151, b = 18.61 and v1 = 23.0. The following reasoning has
been used for the determination of s. Regarding the form of the formula it is natural to select a
decreasing function that asymptotically approaches some constant as v → ∞. Since the data do
not tell us anything about the survival rate for speeds above 27 m/s (the maximum in Table 7)
it is necessary to resort to some heuristic estimate for higher speeds. We have assumed that,
regardless of how fast an avalanche travels, some proportion of people will always survive. In
particular we have in mind people staying in basements at the time of the accident, and also
people on upper floors, above the avalanche. This proportion has been taken to be 5%, i.e. c =
0.05. The reasons for choosing the survival rate to be of the form 1 – kv2 for lower speeds is
firstly that the data in Figure 12 indicate such a form, and secondly that the death probability
will then be proportional to the kinetic energy of the avalanche.

For the other parameters (k, a, b and v1) we have used maximum likelihood estimation subject
to the condition that s is continuously differentiable at v1. This condition gives the equations
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Direct maximum likelihood estimation together with (8) gives an s curve that is not convinc-
ing because it has a very sharp bend at v ≈ 27 m/s. For this curve v1 = 26.7 m/s. By decreasing
the v1-value the sharpness of the bend is reduced. The s curve shown in Figure 13, which is
the one we have used, is obtained by setting v1 = 23 m/s and then maximising the likelihood
function subject to (8). To check that the reduction in the v1-value is not unduly large we have
computed the likelihood ratio L(26.7)/L(23) which is 1.75. To be able to reject the value v1 =
23 using a likelihood ratio test at the 10% level would require this ratio to be higher than 3.87
(obtained from the χ2 distribution with 1 degree of freedom).

Along with the survival probability we work with the death probability, which is defined by

(9) d(v) = 1 – s(v).
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The estimates obtained for s and d are of course only valid if the houses in the area where the
method is being applied are of similar strength as the houses hit in Súðavík and Flateyri. We
believe that this is the case for most of the houses in the avalanche hazard towns in Iceland.

6 AVALANCHE FREQUENCY

In addition to the runout index distribution and survival rate, the third basic ingredient in risk
estimation is the frequency of avalanches from the hillside under consideration. The number
of avalanches per year is used as a unit for frequency. Note that this is simply the inverse of
the return period. Contrary to the first two ingredients, which are estimated globally and once
and for all, the frequency estimate is based on the local history of avalanches. As mentioned
in the introduction, the frequency estimate is based on a specific runout index that we denote
with R. The frequency at a general index r is subsequently related to this reference frequency
via the runout index distribution, in accordance with the central assumption also stated in the
introduction. While the appropriate choice of R may vary between slopes it is for computa-
tional purposes of our method convenient to interpret the frequency estimates in terms of one
specific index. The obvious choice is the base index R0 (= 13), but it would not in fact affect
the final risk estimate to make some other choice. The frequency at a general runout index r
will be denoted by Fr and we shall refer to F13 as the base frequency.

6.1 Single path frequency estimation
In Section 4.3 we described how a local estimate of the recording proportion at each runout
distance (and hence runout index) was obtained for the 7 main gullies in Neskaupstaður. Be-
fore dealing with the case when such a local estimate is available, we will examine the simple
case that all avalanches exceeding a runout index R ≥ R0 are recorded, but little is known
about the recording proportion of shorter avalanches. If NR avalanches have reached R in a
period of T years, and NR is not too small (e.g. NR ≥ 4), then a reasonable estimate of the base
frequency is given by

F13 = 
)(

1

RET

N R ⋅

where E is the exceedance probability (3). For a simple example, assume that 4 avalanches
have reached r = 15 in 200 years. Then from Table 5,

F13 = 
%4.19

1

200

4 ⋅  ≈ 0.10

so that approximately 10 avalanches will reach the base index every century. This method of
estimating frequency becomes unreliable if few (one or two) avalanches have reached index R
in the period for which it is held that the number of missing avalanches beyond R is negligi-
ble, and breaks down completely if no avalanches have reached index R.

Assume now that the local recording proportion q has been estimated and that NR avalanches
exceeding a runout index R have been recorded over a period of T years. Then an estimate of
the overall proportion of avalanches exceeding R that have been recorded will be

(10) Q
E R

f r q r drR
R

=
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where q is the local recording proportion. Thus the frequency at index R is E(R)⋅F13 and one
would expect T⋅QRE(R)⋅F13 recorded avalanches exceeding R in a period of T years. The esti-
mate of the base frequency will therefore be

(11) F
N

T
CR

R13 = ⋅

where

(12)
)(

1

REQ
C

R
R =

(which is equal to recordedall
13 / RFF ). From F13 we may subsequently calculate the frequency at a

general runout index r as

(13) Fr = F13⋅E(r).

Note that it follows from (11) and (13) that Fr does in fact only depend on NR, T, QR, E(R) and
E(r), i.e. not on the choice of the base index R0 = 13 for the base frequency.

A simple estimate of q(r) is the global recording proportion p(r). Using this amounts to saying
that the the recording proportion function is the same in the particular hillside as in the entire
196 avalanche data set. In cases where avalanche records are neither particularly complete nor
sparse this should give reasonable accuracy. If q ≡ p (i.e. q(r) = p(r) for all r) and we use the
estimate of Section 4.4 for p(r), we may facilitate frequency estimation by calculating the val-
ues of CR for a range of R-values once and for all. We use the notation *

RC  and *
RQ  for the

values of CR and QR under this assumption on q and p. Table 8 shows the result of using nu-

merical integration for the calculation of *
RC  and *

RQ .

R  Q * R C * R

13.0 0.201 4.98
13.5 0.243 5.91
14.0 0.298 7.19
14.5 0.365 8.96
15.0 0.445 11.57
15.5 0.538 15.81

16.0 0.640 23.35

16.5 0.743 37.81

17.0 0.836 67.31

17.5 0.908 127.67
18.0 0.953 238.36

Table 8. Values of *
RC  and *

RQ  used for frequency estimation with q ≡ p.

An important question to ask is how inaccuracy in p and q will affect the final frequency es-
timate Fr. As before we are estimating the frequency at r from a count of the avalanches that
have reached R. From (2), (10), (11) and (13) we obtain

Fr = .
)(

)(
)(

)(

1
)( ∫∫

∞∞

R
D

r
D

R dt
tp

tq
tfdt

tp
tf

T

N

We see that Fr is completely independent of fD(t), p(t) and q(t) for t < min(r, R). If r > R it is
apart from fD(t) sufficient to have an estimate of the ratio q(t)/p(t) in the interval [R, r]. It is



30

only for t > r that we need separate estimates of p(t) and q(t). This is in particular noteworthy
in the case when we choose to set q ≡ p. If this is in fact valid for t > R, then the final risk es-
timate will be independent of any errors in p(t) for t < r. In the case r < R we see that Fr is in-
dependent of the values of q(t) in the interval [r, R]. For t > R we again need separate esti-
mates of p and q.

Note that there is a trade-off in the choice of R. In order to make the frequency estimate as
reliable as possible, one would like to make NR as large as possible, and thus choose R as
small as possible. But one would also like to reduce the length of the r-interval where one
may have unreliable estimates of p and/or q and thus choose R as large as possible. This sug-
gests that R should be chosen low enough that a few avalanches have exceeded R but not
much lower.

The reliability of the frequency estimate can also be enhanced by choosing more than one
value for R. In practice we have often chosen R = 13, 14, 15 and 16, and then taken the aver-
age of the resulting frequency estimates (perhaps suitably weighted).

For a simple example, assume that we are setting q ≡ p and that 6 avalanches have been re-
corded that exceed r = 14.5 in 90 years. Then from Table 8,

F13 = 60.096.8
90

6 ≈

i.e. six avalanches a decade exceeding r = 13 would be expected on average. But we also see
from the table that *

13Q  ≈ 1/5, saying that during the last century about one fifth of all ava-

lanches in the paths of the data set with r > 13 have been recorded, if the assumptions are cor-
rect. The average frequency of recorded avalanches exceeding r = 13 should therefore be
0.6/5 = 0.12, i.e. about 11 such avalanches should have been recorded over the 90 years. Fi-
nally, let us see what the comments after Table 8 tell us in this example. If the intention is to
estimate the risk at, say, r = 16 then we only need frequency estimates for r > 16 and these
will in fact only depend on the values of q(r)/p(r) in the interval [14.5, 16] and the values of
p(r) and q(r) for r > 14.5, as well as the values of fD(r) for r > 14.5.

6.2 Several gullies
If avalanches fall mostly from isolated gullies deemed to have the same topography, then the
frequency can be jointly determined for all gullies, in order to increase the accuracy. If there
are M gullies and NR, T and CR are as in Section 6.1 (NR is the total number of avalanches
reaching R from all the gullies) then the base frequency in each gully is estimated by

(14) .13 R
R C

MT

N
F ⋅=

We are on slippery ground here, because if the gullies have different recorded frequencies and
the reason is in fact that they are differently shaped (or collect snow differently), then we
might be worse off than by estimating the frequency in each gully individually. To aid in this
decision, one can apply some statistical test to see if one can reject the null hypothesis, that all
the gullies are the same, against the alternative that they are different. This approach might
even be extended to the case when there is not reason to believe that the frequencies are equal,
but one is prepared to make a subjective guess on the relative frequency of each gully.
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Let us now look more closely at the example from Neskaupstaður already mentioned in Sec-
tions 4.3 and 4.4. Table 9 lists all the recorded avalanches with runout index 12 or higher
from 7 big gullies above the town.

The average maximum width of the avalanches with recorded width is 170 m but if we just
take the avalanches that reach runout index 14 we obtain an average maximum width of 244
m. We return to the question of width in the next section.

Let us emphasise that the purpose of this example is to demonstrate the use of the method,
and while we shall assume that the avalanche frequency of each gully is the same, we do not
necessarily believe this to be the case in reality. Now set the observation period to 110 years
(there is a recorded avalanche in 1885 in Neskaupstaður that does not qualify for entry in
Table 9). The recording proportion distribution, q, was estimated as explained in Section 4.4
with the result of Figure 6.

From Table 9, Table 5, (10) and (14) with M = 7 we then obtain the 3 different estimates of
F13 shown in Table 10. Note that in this case p ≡/  q so we cannot use Table 8 to obtain QR and
CR but must instead re-evaluate them. Note also that we give F13 in percentages, so the values
can be interpreted either as the probability that in 1 year an avalanche from a particular gully
reaches index 13, or as the number of avalanches per century that reach 13. We infer from the
table that the base frequency is about 5 avalanches per century.

Gully
Data 

base no.
Date   

Runout 
index

Maximum
 width (m)

Into 
sea

Bræðslugjár 135 Jan./Feb. 1936 15.4 130

136 04.11.1981 12.1 ?

138 04.02.1974 12.9 220

139 20.12.1974 15.6 415 x
142 04.02.1974 12.8 100

Miðstrandarskarð/Klofagil 145 Jan. 1936 14.2 130

146 20.12.1974 14.8 270 x
N/A 21.03.1989 13.3 60

Ytra and Innra Tröllagil 149 Jan. 1894 15.1 ? x
150 March 1920 13.6 140

154 04.02.1974 12.4 ?

155 27.12.1974 13.5 190

Urðarbotnar/Sniðgil 156 27.-28.12.1974 13.6 60

157 04.02.1974 12.2 ?

158 28.12.1974 13.1 60

Drangaskarð/Skágil 160 24.01.1894 15.4 390

161 04.02.1974 13.5 220

162 20.12.1974 14.4 390

163 20.-21.12.1974 12.4 40

Nesgil 167 Feb. 1966 14.7 120

168 04.02.1974 13.2 90

169 19.12.1974 15.2 180

220 21.03.1989 13.6 130

Bakkagil 170 Feb. 1966 14.3 150

171 04.02.1974 13.7 70

172 20.12.1974 16.4 260

221 21.03.1989 13.6 100

Table 9. Long recorded avalanches from 7 gullies in Neskaupstaður.
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R N R E (R ) Q R C R F 13

13.0 20 100% 49% 2.0 5.3%

14.0 11 47% 66% 3.2 4.6%

15.0 6 19% 79% 6.5 5.1%

16.0 1 7% 86% 17.3 2.3%

Table 10. The number of avalanches reaching different runout indices in Neskaupstaður and
corresponding estimates of the frequency of 13-avalanches from each gully.

6.3 Frequency in hillsides
If we are considering a straight hillside where it is deemed that avalanches fall from each part
with equal probability a slightly different approach is required. Assume the total width of the
hillside is W and the estimated avalanche width is A. If Nr, T and E are as before the resulting
estimate of the base frequency is given by

(15) F13 = .R
R C

T

N

W

A ⋅⋅

If for instance the area is 800 m wide, an avalanche is 400 m wide, the estimate of Q13 is ¼,
and 5 avalanches are recorded with runout index greater than 13 in 50 years of observation,
then from (12) we obtain C13 = 1/(Q13E(13)) = 1/(¼⋅1) = 4 and from (15) the frequency esti-
mate at 13:

F13 = 2.04
50

5

800

400 =⋅⋅  per year.

Notice that A is the average avalanche width or more precisely the width of an equivalent
rectangular avalanche where the meaning of equivalent is admittedly somewhat vague. In fact
we have in practice been working with the more easily determined maximum avalanche width
instead of the average width. This causes overestimation of the risk and to compensate we
pull the calculated risk lines towards the mountain. We explain this in more detail in Section
7.3.

We point out that we have assumed here that the width of an avalanche is independent of its
runout distance. This is of course not true in reality, as long avalanches tend to be wider. In
practice we have dealt with this problem case by case in a rudimentary fashion, but the rela-
tionship between avalanche runout and avalanche width would of course deserve a study.
Keylock (1996) has considered how avalanche width depends on avalanche size on one hand,
and how avalanche runout ratio depends on avalanche size on the other.

7 RISK MODEL

7.1 Speed profiles
In Chapter 5 we used the PCM model to estimate the speed of an avalanche at a given point in
its path. A graph showing such estimated speed of an avalanche at each runout index along its
path will be called the speed profile of the avalanche. Examples of speed profiles of ava-
lanches from Skollahvilft are given in Figure 14. Each line in the figure shows the speed pro-
file of the avalanche with the runout index shown at the start of the line (on the left side of the
graph). The speed profile is determined by simulating the avalanche with the PCM model us-
ing the (M/D, µ) pair on the parameter axis of Section 3.3 that will explain the avalanche.
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We will denote by vr(t) the speed at r of the avalanche that stops at t. Thus each of the lines in
Figure 14 is a graph of v as a function of r for a particular t. The uppermost line shows for in-
stance the graph of vr(20), the speed of the avalanche stopping at runout index 20, as calcu-
lated by the PCM model with the parameters (M/D, µ) = (863 m, 0.082). The reason for our
notation is that in the risk formula in the next section we will consider vr(t) as a function of t.
To make it easier to visualise this we show the graphs of v15 and v18 in Figure 15, and show by
filled and open circles corresponding points in the two figures.

Finally we note that researchers have observed that, for parameter pairs in the same range as
we have been using, the PCM model tends to underestimate the real speed (see e.g. McClung
1990), and that this holds true more generally for so-called Vollemy-fluid models (Bartelt and
Salm 1998). While it would of course be desirable to use a model that resulted in better speed
estimates, this effect is counteracted by the fact that the empirical survival function, that we
obtained in Chapter 5, and also enters into the risk formula below, is obtained using the same
PCM model.

7.2 Formulae for risk
We now have all the necessary ingredients to present the formula for calculating the risk of
living or working in a building under an avalanche hillside. The total risk will be the aggre-
gate of the risk from short, medium and long avalanches. Depending on the placement of the
building the different length avalanches will contribute differently to the total risk. The long
avalanches will be rare, but devastating when they fall. The short avalanches are more fre-
quent but not as harmful (or even totally harmless if the building is not within their reach).

Assume that the building is placed at runout index r and let the base frequency be F13 (fre-
quency of avalanches that reach runout index 13). By (13) the frequency of avalanches past
the building is Fr = F13·E(r). The risk formula is most accurately presented as an integral but
this is (maybe) not very transparent so we begin by presenting a rather rough approximation
that we hope is more evident. Denote with v the speed of the avalanche in m/s when going
past the building, and let P(A) be the probability that event A occurs in a one year period. Let

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

55

S
pe

ed
, m

/s

Runout index

7

8

9

10

11

12

13
14
15
16
17
18
20

S
to

pp
in

g 
ru

no
ut

 in
de

x

Figure 14. Speed profiles from Skollahvilft
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d(v) be the death probability given by (7) and (9). If no avalanche can hit the building with a
speed greater than 50 m/s we obtain the following approximate formula for the risk of a per-
son that spends all his time in the building:

(16) Risk = P(0 < v ≤ 10)·d(5) + P(10 < v ≤ 20)·d(15) + ... + P(40 < v ≤ 50)·d(45).

We can calculate the probabilities P(v1 < v ≤ v2) using a table of speeds and runout indices
calculated with the PCM model. The more accurate integral formula is

(17) ∫
∞

=
r r tdtvdtf Fr ))(()(at Risk 13

where f is the runout index density function. This is the formula that we have actually been
using, together with numerical integration. The result is however modified due to a so-called
tongue effect that we explain in the next section.

7.3 Tongue effect
It is quite possible that a house is missed by an avalanche that goes further than the house, due
to the effect demonstrated in Figure 16 where a house at runout index 17 is missed by an
avalanche of runout index 18. We are well aware of the effect but so far we have dealt with it
in a rather rudimentary fashion.

Figure 16. The tongue effect.

We selected a small set of about 7 avalanches with different tongue shapes that were deemed
to be representative for the shapes of all the avalanches in the collection. We then calculated
the position of several risk lines under the standard path using the risk model described above,
assuming that the runout distance was distributed according to the global runout index distri-
bution of Section 4.4 and that the shapes were selected at random from the 7. We then re-
peated the calculation under the assumption that all the avalanches were rectangular and it
turned out that equivalent risk lines were further away from the mountain by about 60 m, cor-
responding to 6/10 of a runout index. The calculation was done using a few different frequen-
cies and we also checked the result in a few other paths. The results differed a bit, but re-
mained in the neighbourhood of 0.6 runout indices.

Under straight (gully-less) hillsides the tongue effect can therefore be taken into account by
pulling all calculated risk lines towards the mountain by a distance corresponding to 0.6
runout indices.

A more satisfactory approach might be to divide each avalanche in the underlying data set
into a fixed number (5 say) of segments of equal width thus allowing the recording of runout
distances of different tongues rather than simply the longest one. In the estimation of the
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runout index distribution we would subsequently treat each segment as a single avalanche. No
further modification of the result of the risk formula would then be required.

Under gullies the situation is a bit more complex since a house that is a little to the side of the
main direction from the gully can escape both because of the shape of the avalanche and be-
cause the avalanche takes a direction away from the house when leaving the mouth of the
gully. On the other hand it is possible that the risk lines should be pulled less back directly
under the gully because the tip of a gully avalanche is often there. Up till now we have been
solving this problem quite heuristically, case by case, but of course further investigation of the
tongue effect under gullies is desirable (see Section 7.6).

7.4 Effect of changing the parameter axis
The choice of the parameter axis in Section 3.3, which has been used throughout this report,
was somewhat subjective. Thus it is important to note that this choice will affect all the differ-
ent ingredients of the final risk formula (17), the shape of the density function, f, the speed
estimate, v, the empirical relationship between death rate and speed, d, and the frequency es-
timate, F13. While we have argued that the estimated risk should not be too sensitive to
change in axis, we have made some investigations into the effect of such change, in an at-
tempt to quantify this claim. In this section we report shortly on the major findings of these
investigations.

For the comparison we have considered two alternative parameter axes, one that lies to the
left of the main parameter axis, and one that lies to the right of it. All three parameter axes are
shown in Figure 17. For ease of reference the figure also shows a selection of isorunlines and
the positions of runout indices. The right axis has been chosen to pass through the minimum
of the mean square deviation of Figure 3 (marked with * here), and the left axis is one that we
used in some earlier implementations of our approach. The equation of the main axis is given
by (1), that of the left axis is µ = 0.513 – 0.000797⋅M/D, and that of the right axis is µ = 0.825
– 0.0003 M/D.
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Figure 17. Three parameter axes and isorunlines for every 20th avalanche as well as the
shortest and the 4 longest according to the scale of each parameter axis. The
numbers along the axes are runout indices.
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The risk comparison involves the estimation of the risk at two horizontal distances, x13 and
x16, in each of the 81 paths of the data set using each of the three parameter axes. The points
are chosen where the main axis runout index is 13 and where it is 16.

For each of the two alternative parameter axes we have repeated the estimation of the runout
index data density, fD. We then determined, for each of the 81 paths, the recording proportion
at each point on the path, according to the main axis runout index of the point, using the func-
tion p of Section 4.4. To find the appropriate recording proportion function for the new axis
we have, for each (new) runout index, located the corresponding point on each of the 81
paths, and then taken the average of the recording proportions at these points. The real density
function f was then determined using (2). To determine the avalanche speed that enters into
the risk formula (17) we selected appropriate pairs on the new axis and simulated again with
the PCM model. It was also important to repeat the survival probability estimation of Chapter
5 in order to obtain a revised d, because the PCM model gives consistently higher speeds
when the axis is moved to the right in the (M/D, µ) plane.

Having obtained the new f, v, and d that enter into the risk formula (17), the only remaining
quantity is the base frequency, F13. For this, we set the frequency to 1 at x13, and then use (13)
to determine F13 (the frequency where the new runout index is 13). In this way we are factor-
ing out the frequency estimation, in effect assuming that the frequency has been determined at
x13 and observing the effect on the risk estimate of changing the axis.

The results of the comparison are given in Figure 18 and Table 11. As an example of how to
read the histograms, there are 25 hills where the risk estimate at x16 is between 30% and 40%
lower for the left axis than for the main axis. In addition to the average risk change, Table 11
also gives the average change in the estimated frequency, at x16 and x18 (where the (main axis)
abstract runout index is 18). The relatively large increase in the frequency when moving to the
right axis indicates that the runout index distribution corresponding to the right axis has a
thicker tail than the main one.

Average risk change Average frequency change
Axis line used          x13             x16          x13              x16             x18

left -4.9% -16.4% 0.0% -8.5% -5.4%

right 0.4% 74.7% 0.0% 45.8% 75.4%

Table 11. Average change in estimated risk and frequency when moving from parameter
axis of Section 3.3 to two other parameter axes.

A credible explanation of the risk increase at x16 when moving to the right axis, is that the
longest avalanches have a longer runout on average after transfer to the other hills using the
right axis, than when the main axis is used. One difficulty with checking this claim is that the
set of ‘longest avalanches’ is not well defined, as it depends on which axis is used. However,
if the 5 longest avalanches according to each axis are chosen then a set of 7 avalanches is ob-
tained. If these avalanches are transferred to each of the 81 hills using the right axis their
transferred runout is 60 m longer on average than when the main axis is used. If the 10 longest
are chosen for each axis a set of 16 is obtained and their transferred runout is on average 40 m
longer when the right axis is used. This may be compared with the average distance one must
move uphill from x16 to increase the risk by 75%, which we have calculated to be 39.8 m, us-
ing the 81 hills and (17) with the main axis.
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Figure 18. Summary of the change in estimated risk at r = 13 and r = 16 for all 81 paths of
the Icelandic data set when moving from the parameter axis of Section 3.3 to lines
that lie (a) further to the left and (b) further to the right.

To further investigate the changes in risk we tried changing only the speed and survival prob-
ability in (17), leaving f(t) unchanged. When moving to the left axis the average risk change
turned out to be – 4.5% at r = 13 and –10.2% at r = 16, thus accounting for most of the risk
change. When moving to the right axis, however, the average effect on the risk was negligi-
ble, 0.0% at r = 13 and 0.8% at r = 16.

In our opinion these results support our claim that the risk estimate is not unduly sensitive to
changes in the parameter axis. It may be further kept in mind that in accordance with the dis-
cussion in Section 3.2 the runout index distribution may be viewed as a one-dimensional pro-
jection of the “true” two-dimensional parameter distribution and from this viewpoint some
weighted average of estimates based on different axes might be used. In a similar vein it is of
some value to estimate the risk in a particular hillside using several parameter axes. If they all
give similar results, the confidence in the results is increased, and vice versa if the outcomes
differ widely.

7.5 Acceptable return period
The frequency estimates that we have obtained working with the method vary considerably,
ranging from less than 1 avalanche per century reaching r = 13 to values approaching 1 ava-
lanche per year reaching r = 13 (cf. the estimate F13 = 0.75 obtained for Skollahvilft just after
Table 4, the estimate F13 = 0.1 of Section 7.6 for Súðavík and the estimate F13 = 0.05 of Sec-
tion 6.2 for Neskaupstaður). In Table 12 the relationship between risk, frequency and return
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period is considered. The table is calculated using the main parameter axis and the standard
path, but the results are neither very sensitive to the chosen path nor the axis. It is quite note-
worthy that we find that to reach an acceptable risk level a much higher return period than
previously reckoned is necessary — 3000 to 8000 years depending on frequency, compared
with 300 years in Swiss regulations and 1000 years in Norwegian regulations (Salm et al.
1990; Lied 1993, but see the discussion in Section 2.4). The increase in return period with de-
creasing base frequency is caused by the fact that the exceedance probability, E, dies out very
quickly for r higher than about 18. If E(r)/E(r + 1) were constant then the risk-return period
relationship would be independent of frequency, but it is easy to see from Table 5 that our es-
timate of E decreases much faster than this.

Return period, years
Base frequency Risk = 3×10–4 Risk = 1×10–4 Risk = 0.3×10–4

Low, F 13 = 0.01 1000 (r =15.1) 2600 (r =15.8) 7700 (r =16.6)

Medium, F 13 = 0.1 700 (r =16.6) 2100 (r =17.3) 5100 (r =18.1)

High, F 13 = 1 500 (r =18.1) 1100 (r =18.6) 2900 (r =19.1)

Table 12. Return period according to base frequency and risk. The numbers are obtained
using the standard path.

The values for the risk chosen in Table 12 correspond to the boundaries between differently
coloured zones according to the Icelandic draft regulations for avalanche hazard mapping.
These state that areas where estimated risk is greater than 3·10–4 should be coloured red, those
where the risk is between 1·10–4 and 3·10–4 should be blue, yellow between 0.3·10–4 and
1·10–4, and “safe” areas should be white. Recall that  0.3·10–4 is the acceptable risk level for
living houses, discussed in Section 2.3.

7.6 Examples of risk calculation
In this section we shall consider two examples of risk estimation, one under Bakkagil in Nes-
kaupstaður (one of the 7 gullies discussed earlier), and the other under the hill in Súðavík. Let
us emphasise that the results should not be viewed as final risk estimates for these areas, but
rather as examples of the use of the methodology presented herein.

Let us look first at Bakkagil. We have already estimated the base frequency for each of the 7
gullies as F13 = 5 avalanches per century (see the end of Section 6.2). Using this value to-
gether with (17) we have calculated the positions of the three risk levels of the draft regula-
tions discussed in the last section.

As mentioned at the end of Section 7.3 some heuristic must be used to take the tongue effect
into account under a gully. We have taken the course of pulling the calculated position 0.3
runout indices uphill on the centre line (directly under the gully), and 1.2 runout indices uphill
at reference points 200 m on either side of the centre line. The risk line is then obtained by
drawing a smooth parabola like curve through these three points. If the risk line really is a pa-
rabola, then this corresponds to an average pulling of 0.6 runout indices over a 400 m wide
area under the gully, in accordance with the recommended value of Section 7.3. The distance
of the reference points on either side from the centre line (200 m), corresponds to an average
width avalanche of 300 m that is allowed to sway 50 m to either side on leaving the gully
mouth.

The resulting risk lines are shown on the map in Figure 19 (dashed lines), together with
runout indices (unbroken lines), and the reference points (filled circles). By (13) the return
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period is approximately 5700 years at the 0.3 risk line, 2100 years at the 1.0 risk line and 800
years at the 3.0 risk line. Moreover, the map shows the location of the Bakkagil profile
(Nesk25aa), and outlines of recorded avalanches from Bakkagil (unbroken) and the neigh-
bouring gullies (dashed). Two adjacent profiles, not shown on the map, were also used for the
calculation. Note that the map only shows risk due to avalanches from Bakkagil. A final risk
map would have to add the risk due to avalanches from the nearby gullies.

Figure 19. Risk estimation due to avalanches from Bakkagil, Neskaupstaður. Scale 1:7500.
See main text for explanations.

It is of interest view the function under the integral in (17) to see the contribution of ava-
lanches with different runout indices to the total risk. In Figure 20 this function is shown for a
house at r = 16. The 5%, 25%, 75% and 95% percentile points are at runout indices 16.3,
16.7, 17.8 and 19.1 respectively, so that 90% of the risk is caused by avalanches going be-
tween 0.3 and 3.1 runout indices beyond the house and half the risk is caused by avalanches
going between 0.7 and 1.8 indices beyond it. Similar graphs are obtained in other paths and
for other values of r, except that the distribution is narrower for higher r-values.
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Figure 20. The distribution of risk with runout distance for a house at r = 16 in Bakkagil.
The graph shows the function under the integral in (17), normalised as a density
function.

Now turn the attention to Súðavíkurhlíð, the hillside above Súðavík. Here we have yet to es-
timate the base frequency. We regard Súðavíkurhlíð to be a ‘straight hillside’ and use Section
6.3. The total width of the area considered is A = 750 m and there are four recorded ava-
lanches exceeding runout index 13. Details of these are given in Table 13.

Database no. Profile Date Runout index Width
24 Suhl01aa 06.01.1983 14.5 175 m

25 Suhl02aa 06.01.1983 15 100 m

30 Suhl02aa 18.12.1994 14.3 40 m

31 Suhl04aa 16.01.1995 16.1 275 m

Table 13. Recorded avalanches from Súðavíkurhlíð.

The average width of these avalanches is 148 m. However, long avalanches tend to be wide,
and we choose to use an avalanche width of W = 200 m, based on that fact and experience
from elsewhere. Based on the ages of the houses in the village we judge the observation pe-
riod to be T = 60 years. We have also chosen to use q ≡ p and thus we may use the values of

*
RC  from Table 8. We may now use (15) to estimate the base frequency, and as earlier we

choose to use several values of R. Table 14 gives the details of the calculation.

The average of the obtained F13 values is 10.0%. Now (17) may be used to calculate the risk
at selected points in the village, and this time we may use constant tongue effect pulling of 0.6
runout indices everywhere. The result is shown on the map in Figure 21. On the 20⋅10–4 risk
line the runout index is 15.4 and the return period calculated with (13) is 150 years, and on the
50⋅10–4 risk line the runout index is 14.7 and the return period 70 years. If the risk is 50⋅10–4,
the exposure is 60%, and one lives in the house for 40 years, then the probability of being
killed in an avalanche is about 12%!
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R A/W T N R C* R F 13

13 0.267 60 4 4.98 8.9%

14 0.267 60 4 7.19 12.8%

15 0.267 60 1½ 11.57 7.7%

16 0.267 60 1 23.35 10.4%

Table 14. Base frequency calculation in Súðavíkurhlíð.

Figure 21. Avalanche risk in Súðavík. Scale 1:7500. See main text for explanations.

8 CONCLUDING REMARKS

The method described herein is designed for assessing the risk caused by avalanches from
hillsides that have some recorded history of avalanches. We have not described a comprehen-
sive method for avalanche hazard zoning that takes everything into account. It will not help in
identifying starting zones of avalanches. It is not suitable for assessing the risk from slush
flows or mud flows. The method is not really suited for hillsides where there is no avalanche
history, although it can be used to put an upper limit on the risk under such hillsides, and it is
not suitable in its present state for hazard evaluation of areas that are protected by defence
walls or supporting structures.

We remind the reader of some of the shortcomings and possible improvements that we have
mentioned along the way. Among them are the need to improve the handling of the tongue
effect, a study of the tongue effect under gullies, the study of the relationship between ava-
lanche width and runout distance, the dependence of survival on the size of an avalanche as
well as its speed, and a better estimate of the global runout index distribution using the age of
houses. To tailor the method for low hills a study of fatalities due to smaller avalanches would
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be necessary, as well as a study of their runout distances. One would also like to try using the
method with more sophisticated physical models that hopefully describe real avalanches bet-
ter than the PCM model. Another idea is to use a combination of topographical models and
physical ones. For the topographical model we have in particular in mind a method suggested
by Guðmundsson (1996), which, in contrast with methods based on alpha-beta models or
runout ratios, uses information on the full profile of each avalanche path and then generates
for a given path the analogue of the data density function. Along with such improvements it is
important to consider how one should possibly restrict or subdivide the data set in a clearly
defined manner, in order to ensure that the underlying assumption behind our approach, stated
in the introduction, holds true. Most likely, however, a balance has to be drawn between satis-
fying this assumption and not making any subset of avalanches unduly small.

Finally we wish to describe an important approach to checking the validity of the proposed
risk estimates. For each house, both present and past, in the Icelandic towns under avalanche
risk, use the method to calculate the risk. For each house, determine the length of time that it
has been standing, and estimate the expected average number of people present in the house
during each period of its existence. The risk may then be integrated to find the expected total
number of people that would have been killed in the last 120 years (about the age of the
towns) based on the risk being as calculated. This number may then be compared with the
actual number of fatalities. Indeed, a central advantage of the approach outlined in this report
is that it lends itself to quantitative checks of this kind.
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