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Abstract

This report describes the calculation of eigenvectors of local topogra-
phy for Iceland. The motivation was to generate predictands to use with
regression. In this report “local” refers to a scale of 5 by 5 km. The results
for the scale show that half of local topographic variance can be explained
by one eigenvector, and the first four combined explain almost 90% of the
variance. These four eigenvectors ’localize’ the following features of the
landscape: a) east-west slope, b) north-south slope, c) east west ridge and
d) a saddle like topography.

Data and method

The topographic data was the same one as used in the regression study by
Gylfadottir [1]. This data is obtained from the U. S. National Oceanic and
Atmospheric Administration (NOAA) web server.! The data is on a grid that
is approximately 1 by 1 km (see figure 1). The size of the grid is 1440 by 480
cells, but of those 59% lie outside the coast of Iceland. The methodology for
calculating the eigenvectors is fairly standard [2] and will not be described in
detail in this report.

Eigenvectors of 5 by 5 km elements.

The method used is based on the French AURELHY method [3]. To calculate
the eigenvectors of local topography, each grid point on the map was sampled
along with surrounding points. For a 5 by 5 km grid we chose as surrounding
points those that lie within a box that extends two grid-points to the north,
south, east and west (see figure 2). Henceforth, the grid-point along with this
halo region will be referred to as a local topographic element.

For each grid-point on the map a topographic element is obtained and stored.
In some cases a part of an element will extend outside the coastline. In such
cases the element is tagged, and not used in the ensuing analysis. This process
yielded 259,104 elements, each consisting of 25 numbers. Notice that the total
number of elements is slightly less than the number of grid-points (1440 x 480)
since grid-points on the periphery of the domain cannot be used. The element
mean was subtracted from each element, and the resulting data stored in a
matrix M. We will refer to this data as the centered element matrix.

Figure 3 shows one line from the centered element matrix. The line chosen
is the one corresponding to the central grid-point. The resulting map shows the
“local” topography, in that positions of small scale valleys and mountain ridges
will appear quite clearly, but without larger scale features. The local topography
has several interesting features. Strong erosional features are evident both in the
eastern part and the western part of the map. This is especially clear in parts
of west-Iceland, where glacier carved valleys predominate the landscape. In a
region extending from the southwest of Iceland to the northeast, the erosional
features seem to be absent, but this area corresponds to the youngest part of
the surface.

Thttp://www.noaa.gov/topography.html



Icelandic topography with 1 by 1 km resolution
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Figure 1: The topography of Iceland on a grid that is approximately 1 by 1 km.
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Local topographic element
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Figure 2: A local topographic element on the 5 by 5 km scale consists of a
central grid-point and a two grid-point wide halo.



Altitude minus 5 by 5 km mean
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Figure 3: A subset of the centered element matrix M, i.e. line 13. This line
corresponds to the middle grid-point of each topographic element. One can

think of this figure as showing the “local” topography, i.e., a map that clearly
shows positions of valleys and ridges.
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Eigenvector spectrum for 5 by 5 km elements
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Figure 4: Eigenvalues of R (solid line and *). The two dotted lines show Monte
Carlo estimations of eigenvalue sizes expected by chance (see appendix for dis-
cussion).

From the centered element matrix a covariance matrix R can now be defined?
R = MM

If the size of M is (25 x 259,104) then the size of R will be (25 x 25). The
eigenvectors of R are solutions to

RB = BA,

where A is a diagonal matrix with the eigenvalues of R, and B is a matrix with
the corresponding eigenvectors of R as column vectors. The relative importance
of each eigenvector can be gauged from the size of the eigenvalue. If \;; is the
eigenvalue corresponding to eigenvector number i, then the amount of variance
explained by the eigenvector given by \;; /tr(A), where ¢r is the trace (i.e., the
sum of the diagonal) of A.

Figure 4 shows the amount of variance explained by each eigenvector. Clearly
the first few explain most of the variance. To estimate the significance of each
eigenvalue, we performed two different Monte-Carlo (MC) type experiments, the
details of which are given in the appendix. The results of the MC experiment
indicated that the first four eigenvectors should be retained. Eigenvectors 1 —4
explain respectively 52%,17%, 12% and 6% of the variance.

Figure 5 shows the four eigenvectors corresponding to these eigenvalues. The
first two eigenvectors describe a dipole in the north-south (east -west for eigen-
vector 2) direction. Eigenvector three describes a unimodal feature, whereas
eigenvector four is a saddle like feature.

2Strictly speaking R is not a covariance matrix, since M is has had the column averages
subtracted, but not the line averages.
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Figure 5: The shape of the four eigenvectors corresponding to the four largest
eigenvalues.



Projection of the first eigenvector onto all elements

67 2000
66.5- . ' il - 1500
661 § 1000
65.5r 1 F 1500
()
S
E 65F 17 10
©
—
64.5r 1 7 §| 500
64+ 4 -1000
63.5r o 4 -1500
63 ! ! ! ! ! 1 -2000
-24 =22 =20 -18 -16 -14
Longitude

Figure 6: The projection of the first eigenvector onto the centered element
matrix.

If b; is the eigenvector corresponding to eigenvalue A;; the projection of the
eigenvector onto the centered data matrix is simply found by calculating

a; = Mtbl

With M is (25 x259,104) and b; is be (25 x 1) the size of a; will be (259,104 x 1),
which is identical to the number of elements obtained from the original map.
Figures 6-9 show the projections of these eigenvectors onto the centered
element matrix. The figures show that the projections will have the largest
amplitudes in the fjord areas on the east coast, and in the northwest peninsula.
Large amplitudes are also apparent on the mid-peninsula to the north of the
country. In the fjord areas local topographic features have a predominant east
west orientation, and hence the first eigenvector projects strongly onto this area.
These projections will be used as predictands for an empirical model of mean
monthly temperature (to be used with the standard predictands of location
(position and altitude) and distance from coast, see [1] for details). As such, they
can be compared with those obtained in [4] where 5 physically based predictands



Projection of the second eigenvector onto all elements
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Figure 7: The projection of the second eigenvector onto the centered element
matrix.
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Projection of the third eigenvector onto all elements

67 T T T T T : 1000
800
66.5- 1
600
661 & ’ D ] 400
| $~$§’ t 200
65.5- s 1
-g AV s
£ 65} 0 1
© A -200
«© 2
64.5 . e
-600
64 1
-800
63.5r 4 ~1000
-1200
63 | 1 1 1 1 1
=24 =22 -20 -18 -16 -14
Longitude

Figure 8: The projection of the third eigenvector onto the centered element
matrix.
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Projection of the fourth eigenvector onto all elements
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Figure 9: The projection of eigenvector 4 onto the centered element matrix.
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for an empirical model of precipitation were calculated. These were based on
a) standard deviation of local elevation, b) steepness of topography, c) slope
orientation, d) standard deviation of the slope orientation and e) the greatest
difference elevation within each 5 by 5 km element. Three of these 5 predictands
(a,b,e) loosely resemble the eigenvector projections in figures 6 — 9 in that the
amplitude is largest in similar areas of the country. The predictands having to
do with slope orientation and standard deviation (c,d) do not resemble any of
the eigenvector projections above.

In figures 6 — 9 the difference between the maximum and minimum values
(the range of the figure) is reduced as we go to higher eigenvectors (thus is largest
for 6 but smallest for figure 9). This is due to the fact that the variance associ-
ated with each eigenvalue is reduced as we go to higher eigenvectors. Although
not crucial for regression purposes it is still preferable that this difference be
similar in all the four predictands produced by this method. In accordance with
the methodology described in appendix B, we therefore chose to divide each
projection with the square root of the corresponding eigenvalue. This yields
predictand patterns that all have similar range.
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A Monte Carlo estimation of the significance of
eigenvalues

Assessing the significance level of a quantity using Monte Carlo methods is
usually performed in the following manner: First surrogate data is generated,
next the quantity of interest is calculated from the surrogate data. This is
repeated enough times to get a distribution of the quantity of interest. The
original value of the quantity is then compared with the distribution and the
significance level estimated.

Here, two methods were used to generate the surrogate data. First we gen-
erated surrogate data by shuffling the element matrix and centering it. The
eigenvalues were then calculated and stored. This process was repeated 100
times and following that the distribution of values obtained for each eigenvalue
was examined. In general the surrogate data yielded covariance matrices with
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uniform eigenvalues, each explaining about 4% of the data. This is not surpris-
ing since this method generates random surrogate covariance matrices Rs. Such
matrices do not have any directional preference, and thus for a random covari-
ance matrix of size N, one can expect each eigenvalue to explain (100/N)% of
the variance.

The second method consisted of selectively reordering the original covariance
matrix R, in such a fashion that the reordered one was still a quadratic (positive
definite) matrix. The simplest way to do this is to first calculate the matrix
square root of R, i.e., find S so that

S'S = R.

The MC experiment consists of randomly shuffling S, reforming the covariance
matrix and calculating the eigenvalues. We did this 1000 times, and following
that, we examined the distribution of each eigenvalue. Since this method better
preserves directional information inherent in R it yields eigenvalues that are not
uniformly distributed. Figure 4 shows the 95% level for the distribution of each
eigenvalue.

From the figure it is clear that eigenvalues 1,2 and 3 (that explain 52%,17%
and 12% of the total variance, respectively) are all judged significant by both
methods. Eigenvalue 4 (explaining 6% of the variance) fails according to the
second method, and all other eigenvalues fail according to both methods. In
what follows we will accordingly, focus our attention on the first four eigenvalues
only (which combined explain 87% of the variance), keeping in mind that of
those the fourth one is the least significant one.

B Eigenvectors of the covariance matrix

As noted earlier the matrix formed to calculate the eigenvalues R = M M? is
not a true covariance matrix, since M is centered on the columns, not the lines.
However, as the size of M is (25 x 259, 104) the size of the true covariance matrix

K=M'M

is (259,104 x 259,104), which is too large for most eigenvalue solvers.

In practice, it is not neccessary to solve for the eigenvalues of K, since it is
easy to show (e.g. using singular value decomposition, see [2] for details) that
R and K have the same eigenvalues. The eigenvectors of K can be found by
calculating the projection of the eigenvectors of R onto the centered element
matrix M, and scaling the resuls. The scaling factor for each eigenvector is
given by the square root of the corresponding eigenvalue of R (and of K). Thus
the four dominant eigenvectors of K are represented by maps identical to those
in figures 6 — 9, apart from the scaling.

The maps shown in these figures differ considerably in the their range (i.e.,
the difference between maxima and minima, easily read of the color-bar axis of
each figure). This scaling has the effect of reducing the changes in range that
occur from one map to another. Thus the range of the map in figure 6 is about
4000 while the range of the map in figure 9 is about 1750. With each map scaled
with the square root of the corresponding eigenvalue, the range of both maps
becomes close to 0.03.
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