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ABSTRACT 
           Iceland provides an excellent natural laboratory for studies of 

debris flows and other steep slope water-related transport 
processes. These phenomena are important for the understanding 
of terrestrial landscape evolution. Basic morphological 
similarities between Icelandic gullies and controversial, 
potentially water-related gullies on Mars suggest that Icelandic 
gullies may also offer insight into the conditions and mechanisms 
of Martian gully formation. An understanding of how different 
processes lead to different morphologies in Iceland could identify 
diagnostic features to help fingerprint the range of processes 
operating on Mars. Aerial photographs of study sites in Iceland, 
along with on-site temperature sensors, provide information 
about the evolution of gully morphology and timescales of gully 
activity. We use our preliminary observations to investigate the 
roles of snowmelt, rainfall, and topography in shaping Icelandic 
steep-slope features. 

 
INTRODUCTION 
    Debris flows are water-mobilized gravity flows that carry a poorly mixed 
slurry of rock and sediment downslope. They are one of the major landforms 
that influence the shape of high-latitude slopes (Åkerman, 1978; Rapp, 
1986), and they are ubiquitous in Iceland. Their distinctive signature 
morphology consists of a chute-like head alcove, a channel (often raised with 
levees), and a conical debris apron; taken together, these constitute a ‘gully’. 
Other steep-slope processes active in Iceland include snow avalanches, 
nivation, gelifluction, rockfall, and fluvial erosion. Many of these processes 
overlap spatially with debris flows, competing to shape the morphology of 
gullies.  
   Previous studies of debris flows in Iceland (e.g. Decaulne and 
Sæmundsson, 2007) have focused on their natural hazard relevance. We 
intend to explore the geomorphologic roles of steep-slope processes in 
Iceland, and we will investigate the potential relevance of these terrestrial 
processes to gullies and gully-like forms on Mars.  
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    In 2000, Malin and Edgett published images of alcoves, sinuous channels, 
and debris aprons photographed by the Mars Orbiter Camera (MOC). They 
championed these gullies as evidence of recent liquid water flowing across 
the surface of Mars. Substantial controversy ensued, as the planetary science 
community argued over how the gullies had formed and whether liquid water 
was involved. Three main end-member hypotheses emerged: liquid water 
from a subsurface aquifer (Malin and Edgett, 2000; Heldmann, 2007), runoff 
from melt of snow deposited during a high-obliquity period (Christensen, 
2003; Dickson et al., 2007), and dry granular flow (Treiman, 2003). The 
pitch of the discussion was heightened with Malin et al.’s (2006) 
announcement of new, bright deposits in two gullies that had appeared since 
the last set of photographs was taken in 1999. 
    In the absence of primary data on Martian gullies beyond orbital imagery 
and spectral analysis, terrestrial analogs have proven to be a valuable 
resource for testing new ideas about Martian gullies. Previous terrestrial 
analog studies include Costard et al.’s (2002) work on debris flows in 
Greenland, Hartmann et al.’s (2003) study of gullies in Iceland, and the work 
of Head et al. (2007) in the Antarctic Dry Valleys. With its easy accessibility, 
Iceland offers an excellent opportunity to study a broad range of steep-slope 
features and to test their viability as Martian analogs (Black and 
Thorsteinsson, 2008). 
    Simple debris flows are the Icelandic landform most similar in appearance 
to the classic Martian gully. Debris flows require ample water, which is in 
limited supply on Mars, although liquid water runoff at the Martian surface is 
possible with the assistance of a plugged aquifer (Malin and Edgett, 2000; 
Heldmann et al., 2007) or a brine (Marchant and Head, 2007). But we stress 
the diversity of steep-slope processes in Iceland, many of which require little 
or no liquid water to activate. As Åkerman (1978) has pointed out, gully 
activity on Earth may have fluctuated since the end of the last glaciation. The 
basic gully structures may be several thousand years old (Rapp, 1987). 
However, as our results will show, many processes continue to substantially 
modify gully morphology in the present day. It is therefore important to 
identify and describe the full range of these ongoing erosional, transport, and 
depositional processes. An understanding of how different processes lead to 
different morphologies in Iceland could provide diagnostic features to help 
identify the range of processes operating on Mars. 
    With these considerations in mind, the ultimate goals of our investigation 
are as follows: 

• To gain an understanding of the mechanisms of gully formation and 
their relationship to gully appearance. The basic mechanisms driving 
debris flows in Iceland have been described by Decaulne and 
Sæmundsson (2007), and they include: rain on snow, snowmelt 
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induced by a rapid temperature increase (>10ºC in 24 hours), and 
long-lasting and/or intense rainfall.  The morphological expression of 
these various causes, however, requires further study.  

• To analyze gully activity over longer timescales.  
• To characterize the evolution of gully morphology. 

 
METHODOLOGY 
    We combine ongoing field measurements and observations with analysis 
of aerial photographs provided by Landmælingar Íslands (LMÍ).  
    The field measurements include snow density, snow temperature, gully-
bottom temperature, slope, and the basic dimensions of the gully. Gully-
bottom temperatures are obtained with two electronic temperature sensors, 
one on Ármannsfell and one on the eastern part of the Esja massif. These 
Starmon-type sensors have an accuracy of ±0.05°C and they take a 
temperature reading every minute. We have installed them in the bottom of 
gully channels, in the hope that episodes of meltwater flow in the gullies will 
leave a temperature signature. We expect that any snowmelt events resulting 
in top-to-bottom flow should appear as periods of constant near freezing 
temperature. The goal of our field measurement program is to assemble a 
record of changes in gully activity and morphology over the course of a full 
year, thereby illuminating any seasonal dependence. 
    The aerial photographs (e.g. Figure 2) promise additional insights into 
rates of gully formation, stages of activity and dysfunction, and areal 
distribution. They range in scale from roughly 1:20,000 to 1:60,000. 
Complete coverage of Iceland is available at intervals of roughly 10 years, 
from 1945 onwards. 
  
RESULTS 
Field Observations 
    Substantial volumes of windblown snow accumulate in the alcoves and 
channels of Icelandic gullies. Excavation of a gully on Mt. Esja showed that 
snow depths at the top of the channel were greater than 2.5 meters, even 
when the adjacent slope was bare. Observation of other Icelandic gullies 
indicates that this degree of concentration is not unusual. Nivation (snow 
wash) and focused snow avalanches may be important geomorphic factors as 
a result (Rapp, 1986). Nivation over millennia may be a primary agent in 
shaping the scalloped alcoves where Icelandic gullies originate. Snow density 
and snow temperature profiles from gullies in Southwest Iceland show 
temperate spring snow packs, with snow responding to air temperature in the 
top few centimeters but stabilizing at or slightly below zero degrees Celsius 
throughout the remainder of the profile. Densities range from 0.26 kg/m3 to 
0.554 kg/m3. 
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    Icelandic gullies vary in cross-section from V-shaped to U-shaped 
channels. Luckman (1977) has observed that repeated, concentrated snow 
avalanches may produce U-shaped chutes, which cannot be easily explained 
by running water. Among the V-shaped channels, there is a wide spread in 
depth/width ratios. This may prove a fruitful area for additional 
measurement. 
 
 

 

 
 

Figure 1. (Top): October temperature measurements from a sensor at 
Ármannsfell (elev. ~400 m) along with hourly precipitation (gray bars) and 
temperature at the nearby Þingvellir weather station. 

 
 Figure 1. (Bottom): An enlargement of a period of potential gully flow.  

 
    Unlike on Mars (Christensen, 2003), older, degraded, and inactive gullies 
are clearly present in Iceland. Previous authors have used lichen to estimate 
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the elapsed time since the most recent debris flow activity, finding recurrence 
intervals ranging from 40-500 years in north Sweden (Rapp, 1986).  
    The temperature sensors reveal one potential episode of flow in the 
Ármannsfell gully on October 26-27, shown in Figure 1. The three days 
preceding October 26 were unusually warm, with heavy precipitation (Figure 
1). Precipitation on the day preceding the anomaly was especially heavy. We 
infer that a combination of a warm air mass passing through the area and 
heavy rain may have triggered snowmelt in the alcove and channel, leading 
to runoff in the  

Figure 2. The image at the top provides context of the ~6 km western face of Mt. 
Esja; the second row and third row present close-ups of fan morphology at two 
sites in 1945, 1968, 1977, 2000, and 2008. 2008 images are ground-based from 
January; all other images are aerial, and taken during the summer (courtesy of 
LMÍ). The gully sites in the second and third rows are indicated by the dashed 
and solid rectangles, respectively, in the context image. Note the decadal-scale 
changes in the main channels through the debris aprons, and the snow-filled 
channels in the 2008 images.  

 
gully. However these results must be viewed with care, as a snow pack 
around the sensor could also cause zero temperature readings.  
   The fact that there is rarely only one process at work, even in the same 
gully, has complicated our efforts to isolate cause and morphological effect. 
   Orientation does not appear to have a strong effect on large-scale gully 
distribution in Iceland, although certain faces at specific sites host more 
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gullies than others. Similarly, geology is not a major control either: gullies 
are found both on hyaloclastic formations and layered basalts. Interestingly, 
gullies can also occur when there is no upslope drainage network, supporting 
the role of snow accumulation and melt as a primary driver of gully 
formation in some cases.  
 
 Observations from Aerial Photographs 
     Analysis of aerial photographs helped us to bracket the timescales of 
change in Icelandic gullies. On a decadal scale, changes in debris aprons and 
distal channels were plentiful. Over the course of 50 years, one small new 
debris flow track appeared on a ~6km face of Mt. Esja (Figure 2, top). We 
also identified a transient set of intriguing parallel incisions, which appeared 
and disappeared in tens of years.  
    Clearly, Icelandic gullies are being actively modified on decadal 
timescales in the present day. But equally noticeable was the lack of major 
changes in the landscape of the slope. We did not identify any changes in 
alcove morphology, and the number of major gullies and channels remained 
static. We therefore suggest that primary development of gully morphologies 
occurs on much longer timescales than those for which aerial records are 
available. 
    Figure 2 presents close-ups (from 1945, 1968, 1977, 2000, and 2008) of 
two adjacent sites on Mt. Esja. Changes in the channel paths through the 
debris aprons, and new debris deposits, are visible at both sites. Whipple and 
Dunne (1992) argue that debris fan morphology reveals flow rheology: 
debris-rich flows roughen fan surfaces, and flows with high sediment loads 
fill in channels, leading to avulsion and the creation of new depositional 
termini. Time-staggered aerial photographs like those in Figure 2 allow us to 
analyze the evolution of debris aprons. We observe that individual deposits 
tend to be rounded and lobate, but as individual deposits accumulate, leading 
to distal channel avulsion, the overall debris apron may become digitate. This 
process is illustrated in the bottom sequence of Figure 2. 
  
DISCUSSION 
Implications for Iceland 
    Rapp (1960) and Åkerman (1978) have noted that present rates of talus 
formation in Spitsbergen seem too low to be consistent with the observed 
debris fans. They suggest that talus development might be substantially 
enhanced during periods of increased debris availability. In recent decades 
glaciers in Iceland have been retreating, possibly due to climatic warming 
(Sigurðsson et al., 2007). Where valley glaciers retreat to expose slopes, 
sediments and debris may be released, leading to local increases in the rate of 
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debris apron formation and/or debris flow activity in Iceland. Reported debris 
flow activity in Iceland has increased in historical time (Decaulne and 
Sæmundsson, 2007); however it seems likely that this is largely an artefact 
due to better record-keeping. 
    Our observations serve to reinforce the diversity of the processes that help 
to shape Icelandic gullies. Hydrologically, subsurface aquifers do not appear 
to play a large role in Icelandic gullies. The sources of liquid water are 
primarily surface runoff and snowmelt. 
 

 
 
Figure 3. New bright deposits in a gully in Terra Sirenum on Mars (Malin et al., 
2006; HiRISE PSP_004229_1435). Note the digitate terminus. 
 
Implications for Mars     
    The nature of contemporary gully activity on Mars is one of the major 
questions in the Mars community today. Terrestrial analogs provide several 
potential agents as alternatives to liquid water. Snow avalanches, for 
example, can be facilitated by snow concentration in gullies previously 
shaped by water.        
    Pelletier et al. (2008) modelled one of Malin et al.’s (2006) new bright 
deposits (shown in Figure 3). They found that dry granular flows or very 
sediment-rich flows produced morphologies more consistent with the 
observed deposits than the morphologies produced by water-rich flows. Dry 
granular flows terminated in distributary fingers like those seen in Figure 3, 
whereas water-rich flows were more strongly controlled by topography and 
terminated in the same, lowest, location. However, Pelletier et al. (2008) 
were modelling a single flow event. In Iceland, most gullies appear to host 
multiple flow episodes. As Figure 2 shows, water-related flows can produce 
digitate termini; the fingers accrue in separate flows, as deposition blocks old 
channels and causes avulsion. 
    Running water, rock glaciers, and gelifluction may all help to erode or 
remove terrestrial debris aprons. In the absence of any of these processes, 
debris aprons would likely have been removed during the last glaciation 
(Rapp, 1986). Thus the maximum age of Icelandic debris aprons may be 
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assumed to be on the order of 10,000 years ago, when the Weischelian 
glaciation ended. In this context, questions about the age of Martian gullies 
become vexing. It is difficult to estimate the rate of removal of debris on 
Mars, especially large debris, but certainly it is much lower than on Earth. 
Martian gullies do overlay most other young features, including dunes in 
some cases. However, as our work shows, many other processes can be 
activated by the presence of a gully. The original genesis of Martian gully 
structures could thus have occurred several tens of millions of years ago, 
while more recent snow and ice deposition and rockfall may be promoted by 
the topography of the gully, maintaining a low level of activity. 
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